Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(23): 13071-13079, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304517

RESUMO

The water-permeable skin of amphibians renders them highly sensitive to climatic conditions, and interspecific correlations between environmental moisture levels and rates of water exchange across the skin suggest that natural selection adapts hydroregulatory mechanisms to local challenges. How quickly can such mechanisms shift when a species encounters novel moisture regimes? Cutaneous resistance to water loss and gain in wild-caught cane toads (Rhinella marina) from Brazil, USA (Hawai'i) and Australia exhibited strong geographic variation. Cutaneous resistance was low in native-range (Brazilian) toads and in Hawai'ian populations (where toads were introduced in 1932) but significantly higher in toads from eastern Australia (where toads were introduced in 1935). Toads from recently invaded areas in western Australia exhibited cutaneous resistance to water loss similar to the native-range populations, possibly because toads are restricted to moist sites within this highly arid landscape. Rates of rehydration exhibited significant but less extreme geographic variation, being higher in the native range than in invaded regions. Thus, in less than a century, cane toads invading areas that impose different climatic challenges have diverged in the capacity for hydroregulation.

2.
Sci Rep ; 10(1): 12553, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724106

RESUMO

Amphibians in hot climates may be able to avoid high temperatures by controlling their rates of heating. In northern Australia, invasive cane toads (Rhinella marina) experience hot dry conditions in newly-colonized (western) sites but milder conditions in longer-occupied (eastern) sites. Under standardized conditions, toads from western sites heated less rapidly than did conspecifics from an eastern site. The availability of free water slowed heating rates of eastern but not western toads. Thus, the colonization of climatically extreme sites has been accompanied by a rapid shift in the toads' ability to remain cool under hot conditions, even when free water is not available.


Assuntos
Bufo marinus/crescimento & desenvolvimento , Espécies Introduzidas , Animais , Austrália , Temperatura Corporal , Bufo marinus/fisiologia , Clima , Ecossistema , História do Século XX , História do Século XXI , Temperatura Alta , Espécies Introduzidas/história , Masculino , Dinâmica Populacional/história , Água/química
3.
Ecol Evol ; 8(9): 4403-4408, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29760882

RESUMO

Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads (Rhinella marina) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common-garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.

4.
Conserv Physiol ; 6(1): cox072, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399360

RESUMO

Physiological plasticity may facilitate invasion of novel habitats; but is such plasticity present in all populations of the invader or is it elicited only by specific climatic challenges? In cold-climate areas of Australia, invasive cane toads (Rhinella marina) can rapidly acclimate to cool conditions. To investigate whether this physiological plasticity is found in all invasive cane toads or is only seen in cool climates, we measured the acclimation ability of toads from across Australia and the island of Hawai'i. We collected toads from the field and placed them at either 12 or 24°C for 12 h before measuring their righting response as a proxy for critical thermal minimum (CTmin). Toads from the coolest Australian region (New South Wales) demonstrated plasticity (as previously reported), with exposure to 12°C (vs. 24°C) decreasing CTmin by 2°C. In toads from other Australian populations, CTmins were unaffected by our thermal treatments. Hawai'ian toads from a cool, wet site also rapidly acclimated to cool conditions, whereas those from warmer and drier Hawai'ian sites did not. Thermal plasticity has diverged among populations of invasive cane toads, with rapid acclimation manifested only in two cool-climate populations from widely separated sites. Predictions about the potential range of invasive species thus must consider the possibility of geographic (intraspecific) heterogeneity in thermal plasticity; data from other parts of the species' range may fail to predict levels of plasticity elicited by thermal challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA