Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1281119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260753

RESUMO

Introduction: The surgical treatment of degenerative spondylolisthesis with accompanying spinal stenosis focuses mainly on decompression of the spinal canal with or without additional fusion by means of a dorsal spondylodesis. Currently, one main decision criterion for additional fusion is the presence of instability in flexion and extension X-rays. In cases of mild and stable spondylolisthesis, the optimal treatment remains a subject of ongoing debate. There exist different opinions on whether performing a fusion directly together with decompression has a potential benefit for patients or constitutes overtreatment. As X-ray images do not provide any information about internal biomechanical forces, computer simulation of individual patients might be a tool to gain a set of new decision criteria for those cases. Methods: To evaluate the biomechanical effects resulting from different decompression techniques, we developed a lumbar spine model using forward dynamic-based multibody simulation (FD_MBS). Preoperative CT data of 15 patients with degenerative spondylolisthesis at the level L4/L5 who underwent spinal decompression were identified retrospectively. Based on the segmented vertebrae, 15 individualized models were built. To establish a reference for comparison, we simulated a standardized flexion movement (intact) for each model. Subsequently, we performed virtual unilateral and bilateral interlaminar fenestration (uILF, bILF) and laminectomy (LAM) by removing the respective ligaments in each model. Afterward, the standardized flexion movement was simulated again for each case and decompression method, allowing us to compare the outcomes with the reference. This comprehensive approach enables us to assess the biomechanical implications of different surgical approaches and gain valuable insights into their effects on lumbar spine functionality. Results: Our findings reveal significant changes in the biomechanics of vertebrae and intervertebral discs (IVDs) as a result of different decompression techniques. As the invasiveness of decompression increases, the moment transmitted on the vertebrae significantly rises, following the sequence intact ➝ uILF ➝ bILF ➝ LAM. Conversely, we observed a reduction in anterior-posterior shear forces within the IVDs at the levels L3/L4 and L4/L5 following LAM. Conclusion: Our findings showed that it was feasible to forecast lumbar spine kinematics after three distinct decompression methods, which might be helpful in future clinical applications.

2.
Int J Comput Assist Radiol Surg ; 10(8): 1325-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25556524

RESUMO

PURPOSE: Dynamic implants for the human spine are used to re-establish regular segmental motion. However, the results have often been unsatisfactory and complications such as screw loosening are common. Individualisation of appliances and precision implantation are needed to improve the outcome of this procedure. Computer simulation, virtual implant optimisation and image guidance were used to improve the technique. METHODS: A human lumbar spine computer model was developed using multi-body simulation software. The model simulates spinal motion under load and degenerative changes. After virtual degeneration of a L4/5 segment, virtual pedicle screw-based implants were introduced. The implants' positions and properties were iteratively optimised. The resulting implant positions were used as operative plan for image guidance and finally implemented in a physical spine model. RESULTS: In the simulation, the introduction and optimisation of virtually designed dynamic implants could partly compensate for the effects of virtual lumbar segment degeneration. The optimised operative plan was exported to two different image-guidance systems for transfer to a physical spine model. CONCLUSION: Three-dimensional computer graphic simulation is a feasible means to develop operative plans for dynamic spinal stabilization. These operative plans can be transferred to commercially available image-guidance systems for use in implantation of physical implants in a spine model. This concept has important potential in the design of operative plans and implants for individualised dynamic spine stabilization surgery.


Assuntos
Simulação por Computador , Vértebras Lombares/cirurgia , Modelos Teóricos , Fusão Vertebral/métodos , Parafusos Ósseos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA