Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(23): 4663-4673, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38832568

RESUMO

Organometallic species, such as organoferrate ions, are prototypical nucleophiles prone to reacting with a wide range of electrophiles, including proton donors. In solution, the operation of dynamic equilibria and the simultaneous presence of several organometallic species severely complicate the analysis of these fundamentally important reactions. This can be overcome by gas-phase experiments on mass-selected ions, which allow for the determination of the microscopic reactivity of the target species. In this contribution, we focus on the reactivity of a series of trisarylferrate complexes toward 2,2,2-trifluoroethanol and 2,2-difluoroethanol. By means of mass-spectrometric measurements, we determined the experimental bimolecular rate constants kexp of the gas-phase protolysis reactions of the trisarylferrate anions FePh3- and FeMes3- with the aforementioned acids. Based on these experiments, we carried out a dual blind challenge, inviting theoretical groups to submit their best predictions for the activation barriers and/or theoretical rate constants ktheo. This provides a unique opportunity to evaluate different computational protocols under minimal bias and sets the stage for further benchmarking of quantum chemical methods and data-driven approaches in the future.

2.
Chemistry ; 30(27): e202303653, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427965

RESUMO

In contrast to its behavior in solution, the adduct [(LiBr)(tBu)(Ph)Bpin]- (pin=pinacol) transfers its phenyl anion from boron to lithium upon fragmentation in the gas phase. Quantum chemical calculations predict this exceptional transmetalation to be exothermic relative to the separated reactants, [(tBu)(Ph)Bpin]- and LiBr, which we attribute to the high phenyl-anion affinity of the coordinatively unsaturated LiBr unit. The addition of a single molecule of tetrahydrofuran drastically reduces the phenyl-anion affinity of LiBr and thereby renders the transmetalation from boron to lithium endothermic. Thus, the probed system highlights the importance of solvation and ligation effects in transmetalations. For correctly predicting the direction, in which these reactions proceed, it is not sufficient to consider the electronegativities or partial charges of the involved metals or metalloids. Instead, the individual coordination states and their changes over the course of the reaction must be taken into account.

3.
Chemistry ; 29(71): e202302540, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37752885

RESUMO

The chemistry of alkali-metal enolates is dominated by ion pairing. To improve our understanding of the intrinsic interactions between the alkali-metal cations and the enolate anions, we have applied Cooks' kinetic method to determine relative M+ (M=Li, Na, K) affinities of the stabilized enolates derived from acetylacetone, ethyl acetoacetate, diethyl malonate, ethyl cyanoacetate, 2-cyanoacetamide, and methyl malonate monoamide in the gas phase. Quantum chemical calculations support the experimental results and moreover afford insight into the structures of the alkali-metal enolate complexes. The affinities decrease with increasing size of the alkali-metal cations, reflecting weaker electrostatic interactions and lower charge densities of the free M+ ions. For the different enolates, a comparison of their coordinating abilities is complicated by the fact that some of the free anions undergo conformational changes resulting in stabilizing intramolecular interactions. If these complicating effects are disregarded, the M+ affinities correlate with the electron density of the chelating functionalities, that is, the carbonyl and/or the nitrile groups of the enolates. A comparison with the known association constants of the corresponding alkali-metal enolates in solution points to the importance of solvation effects for these systems.

4.
Chemistry ; 29(41): e202300725, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37139922

RESUMO

The cuprate complexes [Cu(R)(CF3 )3 ]- (R=organyl) offer an efficient synthetic access to valuable trifluoromethylation products RCF3 . Here, electrospray-ionization mass spectrometry is used to analyze the formation of these intermediates in solution and probe their fragmentation pathways in the gas phase. Furthermore, the potential energy surfaces of these systems are explored by quantum chemical calculations. Upon collisional activation, the [Cu(R)(CF3 )3 ]- complexes (R=Me, Et, Bu, s Bu, allyl) afford the product ions [Cu(CF3 )3 ]⋅- and [Cu(CF3 )2 ]- . The former obviously results from an R⋅ loss, whereas the latter originates either from the stepwise release of R⋅ and CF3 ⋅ radicals or a concerted reductive elimination of RCF3 . The gas-phase fragmentation experiments as well as the quantum chemical calculations indicate that the preference for the stepwise reaction toward [Cu(CF3 )2 ]- increases with the stability of the formed organyl radical R⋅. This finding suggests that the recombination of R⋅ and CF3 ⋅ radicals may possibly contribute to the formation of RCF3 from [Cu(R)(CF3 )3 ]- in synthetic applications. In contrast, the [Cu(R)(CF3 )3 ]- complexes (R=aryl) only yield [Cu(CF3 )2 ]- when subjected to collision-induced dissociation. These species exclusively undergo a concerted reductive elimination because the competing stepwise pathway is disfavored by the low stability of aryl radicals.

5.
Chemistry ; 29(22): e202203611, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36692992

RESUMO

For better understanding the intrinsic reactivity of organozinc reagents, we have examined the protolysis of the isolated zincate ions Et3 Zn- , Et2 Zn(OH)- , and Et2 Zn(OH)2 Li- by 2,2,2-trifluoroethanol in the gas phase. The protonation of the hydroxy groups and the release of water proceed much more efficiently than the protonation of the ethyl groups and the liberation of ethane. Quantum-chemical computations and statistical-rate theory calculations fully reproduce the experimental findings and attribute the lower reactivity of the more basic ethyl moiety to higher intrinsic barriers, which override the thermodynamic preference for its protonation. Thus, our minimalistic gas-phase model provides evidence for the intrinsically low reactivity of organozinc reagents toward proton donors and helps to explain their remarkable kinetic stability against moisture and even protic media.

6.
Chemistry ; 29(13): e202203762, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596722

RESUMO

Anionic polymerizations are of exceptional practical importance, but difficult to analyze due to the high reactivity of the growing polymer chains. Here, we demonstrate that electrospray-ionization mass spectrometry (ESI-MS) permits direct observation of the active carbanionic intermediates formed in the anionic ring-opening polymerization of 1-cyanocyclopropanecarboxylate in tetrahydrofuran. This includes the identification of a side product, as well as real-time analysis of the polymerization reaction. From the mass spectra obtained, we can derive not only the mean molar mass and the polydispersity, but also the rate constants for the initiation and the individual propagation steps. The initiation proceeds significantly faster than the propagation steps. Accordingly, the examined reaction corresponds to a living polymerization, as we also confirmed by additional control experiments. Besides giving detailed insight into the reaction system probed here, we also expect the presented methodology to make possible the in-situ analysis of further anionic polymerizations.

7.
Angew Chem Int Ed Engl ; 61(43): e202210211, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-35977914

RESUMO

Anionic coordination polymerizations proceed via highly reactive intermediates, whose in situ analysis has remained difficult. Here, we show that electrospray-ionization mass spectrometry is a promising method to obtain detailed information on the polymerization process. Focusing on polymerization reactions of 1,3-dienes initiated by CoCl2 /RLi (R=Me, nBu, tBu, Ph), we directly observe the growing polymer chains and characterize the active anionic cobalt centers by gas-phase fragmentation experiments. On the basis of these results, we suggest a plausible mechanism for the polymerization reaction. Moreover, the ESI mass spectra permit the determination of molecular weight distributions, which are in good agreement with those derived from NMR-spectroscopic as well as MALDI mass-spectrometric measurements, and afford a wealth of kinetic data.

8.
Chemistry ; 28(65): e202202030, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35948515

RESUMO

Despite its practical importance, organoiron chemistry remains poorly understood due to its mechanistic complexity. Here, we focus on the oxidative addition of organyl halides to phenylferrate anions in the gas phase. By mass-selecting individual phenylferrate anions, we can determine the effect of the oxidation state, the ligation, and the nuclearity of the iron complex on its reactions with a series of organyl halides RX. We find that Ph2 Fe(I)- and other low-valent ferrates are more reactive than Ph3 Fe(II)- ; Ph4 Fe(III)- is inert. The coordination of a PPh3 ligand or the presence of a second iron center lower the reactivity. Besides direct cross-coupling reactions resulting in the formation of RPh, we also observe the abstraction of halogen atoms. This reaction channel shows the readiness of organoiron species to undergo radical-type processes. Complementary DFT calculations afford further insight and rationalize the high reactivity of the Ph2 Fe(I)- complex by the exothermicity of the oxidative addition and the low barriers associated with this reaction step. At the same time, they point to the importance of changes of the spin state in the reactions of Ph3 Fe(II)- .

9.
J Am Soc Mass Spectrom ; 33(8): 1411-1418, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35609237

RESUMO

Negative-ion mode electrospray ionization of solutions of ethanol (RF0OH), 2-fluoroethanol (RF1OH), 2,2-difluoroethanol (RF2OH), and/or 2,2,2-trifluoroethanol (RF3OH) produces anionic dimers of the types (RFnO)2H- and (RFnO)(RFn+1O)H-. The exchange reactions of these anionic dimers with the neutral alcohols are examined in a quadrupole-ion trap to extract kinetic data, from which the reaction Gibbs energies are obtained. In all cases, the formation of anionic dimers containing the more highly fluorinated alcohols is favored. Quantum chemical calculations confirm this trend and, besides affording structural data, also determine the dissociation energies of the anionic dimers. These dissociation energies are much higher than those of the corresponding neutral dimers and increase further for the more highly fluorinated alcohols due to the stronger hydrogen-bond donor ability of the latter. The present results on the interaction of individual alkoxide anions and neutral alcohol molecules contribute to a better understanding of the association of the fluorinated alcohols in solution.

10.
Chemistry ; 28(7): e202103130, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773654

RESUMO

High-valent tetraalkylcuprates(iii) and -argentates(iii) are key intermediates of copper- and silver-mediated C-C coupling reactions. Here, we investigate the previously reported contrasting reactivity of [RMiii Me3 ]- complexes (M=Cu, Ag and R=allyl) with energy-dependent collision-induced dissociation experiments, advanced quantum-chemical calculations and kinetic computations. The gas-phase fragmentation experiments confirmed the preferred formation of the [RCuMe]- anion upon collisional activation of the cuprate(iii) species, consistent with a homo-coupling reaction, whereas the silver analogue primarily yielded [AgMe2 ]- , consistent with a cross-coupling reaction. For both complexes, density functional theory calculations identified one mechanism for homo coupling and four different ones for cross coupling. Of these pathways, an unprecedented concerted outer-sphere cross coupling is of particular interest, because it can explain the formation of [AgMe2 ]- from the argentate(iii) species. Remarkably, the different C-C coupling propensities of the two [RMiii Me3 ]- complexes become only apparent when properly accounting for the multi-configurational character of the wave function for the key transition state of [RAgMe3 ]- . Backed by the obtained detailed mechanistic insight for the gas-phase reactions, we propose that the previously observed cross-coupling reaction of the silver complex in solution proceeds via the outer-sphere mechanism.

11.
J Phys Chem A ; 125(51): 10725-10733, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34930001

RESUMO

We have applied a combination of tandem-mass spectrometry, quantum-chemical calculations, and statistical rate theory computations to examine the gas phase reactions between the trisarylzincate anions ArXZnPh2- (ArX = p-X-C6H4, X = NMe2, OMe, Me, H, F, and Cl) and 2,2,2-trifluoroethanol at T = 310 ± 20 K. The observed reactions bring about the protonation of one of the aryl anions, which is then released as the corresponding arene, while the formed alkoxide binds to the zinc center. The protonation is faster for the more electron-rich aryl groups and shows a linear Hammett plot if the rate constant for X = NMe2 is discarded from the analysis. Although the reactions are highly exothermic, they proceed only with relatively low efficiencies (0.1% ≤ φ ≤ 1.3%). According to the quantum-chemical calculations, this behavior can be ascribed to the reactions proceeding through a double-well potential with a tight transition structure located at the central barrier. Based on these potential energy surfaces, the statistical rate theory computations can reproduce the measured rate constants within factors of 2 to 8. A comparison of the protolysis of the trisarylzincates with that of the corresponding free aryl anions demonstrates how the coordination to the metal center not only stabilizes the carbanions energetically but also moderates their reactivity. Thus, our gas phase study contributes to a better understanding of the fundamentals of organometallic reactivity.

12.
J Chem Phys ; 154(22): 224301, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241235

RESUMO

Electrospray ionization of phenyl argentates formed by transmetalation reactions between phenyl lithium and silver cyanide provides access to the argentate aggregates, [AgnPhn+1]-, which were individually mass-selected for n = 2-8 in order to generate their gas-phase Ultraviolet Photodissociation (UVPD) "action" spectra over the range 304-399 nm. A strong bathochromic shift in optical spectra was observed with increasing size/n. Theoretical calculations allowed the assignment of the experimental UVPD spectra to specific isomer(s) and provided crucial insights into the transition from the 2D to 3D structure of the metallic component with the increasing size of the complex. The [AgnPhn+1]- aggregates contain neither pronounced metallic cluster properties nor ligated metallic cluster features and are thus not superatom complexes. They therefore represent novel organometallic characteristics built from Ag2Ph subunits.

13.
Anal Chem ; 93(28): 9797-9807, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34227799

RESUMO

Organometallics are widely used in catalysis and synthesis. Their analysis relies heavily on mass spectrometric methods, among which traveling-wave ion mobility spectrometry (TWIMS) has gained increasing importance. Collision cross sections (CCS) obtainable by TWIMS significantly aid the structural characterization of ions in the gas phase, but for organometallics, their accuracy has been limited by the lack of appropriate calibrants. Here, we propose tetraorganylborates and their alkali-metal bound oligomers [Mn-1(BR4)n]- (M = Li, Na, K, Rb, Cs; R = aryl, Et; n = 1-6) as calibrants for electrospray ionization (ESI) TWIMS. These species chemically resemble typical organometallics and readily form upon negative-ion mode ESI of solutions of alkali-metal tetraorganylborates. By combining different tetraorganylborate salts, we have generated a large number of anions in a modular manner and determined their CCS values by drift-tube ion mobility spectrometry (DTIMS) (DTCCSHe = 81-585, DTCCSN2 = 130-704 Å2). In proof-of-concept experiments, we then applied these DTCCS values to the calibration of a TWIMS instrument and analyzed phenylcuprate and argentate anions, [Lin-1MnPh2n]- and [MnPhn+1]- (M = Cu, Ag), as prototypical reactive organometallics. The TWCCSN2 values derived from TWIMS measurements are in excellent agreement with those determined by DTIMS (<2% relative difference), demonstrating the effectiveness of the proposed calibration scheme. Moreover, we used theoretical methods to predict the structures and CCS values of the anions considered. These predictions are in good agreement with the experimental results and give further insight into the trends governing the assembly of tetraorganylborate, cuprate, and argentate oligomers.

14.
J Org Chem ; 86(5): 3750-3757, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33599503

RESUMO

We propose electrospray-ionization (ESI) mass spectrometry as a robust and powerful method for the in situ analysis of carbanions. ESI mass spectrometry selectively probes the charged components of the sampled solution and, thus, is ideally suited for the detection of free carbanions. We demonstrate the potential of this method by analyzing acetonitrile solutions of 15 different carbon acids AH, whose acidities cover a range of 11.1 ≤ pKa(DMSO) ≤ 29.5. After treatment with KOtBu as a strong base, all but the two least acidic compounds were successfully detected as free carbanions A- and/or as potassium-bound aggregates [Kn-1An]-. The association equilibria can be shifted toward smaller aggregates and free carbanions by the addition of the crown ether 18-crown-6, which facilitates the evaluation of the mass spectra. When KOtBu was replaced by other bases (LiOH, LiNiPr2, NaH, NaOH, KOH, NBu4OH) or when tetrahydrofuran or methanol was used as a solvent, carbanions were also successfully observed. For further demonstrating the utility of the proposed method, we applied it to the analysis of the Michael addition of deprotonated dimedone to butenone. ESI mass spectrometry allowed us to follow the decrease of the reactant carbanion and the buildup of the product carbanion in time.


Assuntos
Éteres de Coroa , Espectrometria de Massas por Ionização por Electrospray , Ânions , Metanol , Solventes
15.
Chemistry ; 26(53): 12145-12149, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32621556

RESUMO

To gain mechanistic insights, natural systems with biochemical relevance are inspiring for the creation of new biomimetics with unique properties and functions. Despite progress in rational design and protein engineering, folding and intramolecular organization of individual components into supramolecular structures remains challenging and requires controlled methods. Foldamers, such as ß-peptides, are structurally well defined with rigid conformations and suitable for the specific arrangement of recognition units. Herein, we show the molecular arrangement and aggregation of ß3 -peptides into a hexameric helix bundle. For this purpose, ß-amino acid side chains were modified with cyanuric acid and triamino-s-triazine as complementary recognition units. The pre-organization of the ß3 -peptides leads these Janus molecule pairs into a hexameric arrangement and a defined rosette nanotube by stacking. The helical conformation of the subunits was indicated by circular dichroism spectroscopy, while the supramolecular arrangement was detected by dynamic light scattering and confirmed by high-resolution electrospray ionization mass spectrometry (ESI-HRMS).

16.
Chemistry ; 26(53): 12212-12218, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32428266

RESUMO

The electron-poor palladium(0) complex L3 Pd (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) reacts with Grignard reagents RMgX and organolithium compounds RLi via transmetalation to furnish the anionic organopalladates [L2 PdR]- , as shown by negative-ion mode electrospray-ionization mass spectrometry. These palladates undergo oxidative additions of organyl halides R'X (or related SN 2-type reactions) followed by further transmetalation. Gas-phase fragmentation of the resulting heteroleptic palladate(II) complexes results in the reductive elimination of the cross-coupling products RR'. This reaction sequence corresponds to a catalytic cycle, in which the order of the elementary steps of transmetalation and oxidative addition is switched relative to that of palladium-catalyzed cross-coupling reactions proceeding via neutral intermediates. An attractive feature of the palladate-based catalytic system is its ability to mediate challenging alkyl-alkyl coupling reactions. However, the poor stability of the phosphine ligand L against decomposition reactions has so far prevented its successful use in practical applications.

17.
J Am Soc Mass Spectrom ; 30(10): 1857-1866, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31502224

RESUMO

In contrast to the extensive knowledge of lithium cation affinities and basicities, the thermochemistry of microsolvated lithium cations is much less explored. Here, we determine the relative stabilities of Li(A,B)n+ complexes, n = 2 and 3, by monitoring their gas-phase reactions with A and B substrate molecules, A/B = Me2O, Et2O, tetrahydrofuran, and MeCN, in a three-dimensional quadrupole-ion trap mass spectrometer. Kinetic analysis of the observed ligand displacement reactions affords equilibrium constants, which are then converted into Gibbs reaction energies. In addition, we use high-level quantum chemical calculations to predict the structures and sequential ligand dissociation energies of the homoleptic Li(A)n+ complexes, n = 1-3. As expected, the ligands dissociate more easily from complexes in higher coordination states. However, the very nature of the ligand also matters. Ligands with different steric demands can, thus, invert their relative Li+ affinities depending on the coordination state of the metal center. This finding shows that microsolvation of Li+ can result in specific effects, which are not recognized if the analysis takes into account only simple lithium cation affinities and basicities.

19.
Anal Chem ; 91(18): 11703-11711, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31442028

RESUMO

Previous attempts to characterize the internal energies of ions produced by electrospray ionization (ESI) have chiefly relied upon benzylpyridinium ions, R-BnPy+, as thermometer ions. However, these systems are not well suited for this purpose because of their relatively high dissociation energies. Here, we propose benzhydrylpyridinium ions, R,R'-BhPy+, as a new class of thermometer ions. DLPNO-CCSD(T)/CBS//PBE0-D3BJ calculations for R,R'-BhPy+ (R,R' = H,H'; Me,Me'; H,OMe'; Me,OMe'; OMe,OMe'; NPh2,NPh2') predict that these ions fragment by the loss of pyridine via loose transition states. The computed threshold energies of these fragmentations, 0.70 ≤ E0 ≤ 1.74 eV, are significantly lower than those of the dissociation of the benzylpyridinium ions. The theoretical predictions agree well with results from guided ion beam experiments, which find threshold energies of 1.79 ± 0.11, 1.55 ± 0.13, and 1.37 ± 0.14 eV for the fragmentation of R,R'-BhPy+, R,R' = H,H'; Me,Me'; H,OMe', respectively. The determined thermochemistry for these systems is then used to characterize the internal energies of ions produced by ESI from dichloromethane and methanol solutions under standard conditions. Correlating the measured survival yields of five of the R,R'-BhPy+ ions with the computed threshold energies including explicit consideration of their dissociation rates, we derive energy distributions with maxima at 2.06 ± 0.13/1.88 ± 0.11 eV and widths of 0.86 ± 0.07/0.86 ± 0.06 eV (dichloromethane/methanol). These energy distributions are comparable to ion temperatures between 620 ± 20/590 ± 20 and 710 ± 20/680 ± 20 K (dichloromethane/methanol).

20.
Chemistry ; 25(58): 13376-13384, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31335999

RESUMO

Despite their considerable practical value, palladium/1,3-diene-catalyzed cross-coupling reactions between Grignard reagents RMgCl and alkyl halides AlkylX remain mechanistically poorly understood. Herein, we probe the intermediates formed in these reactions by a combination of electrospray-ionization mass spectrometry, UV/Vis spectroscopy, and NMR spectroscopy. According to our results and in line with previous hypotheses, the first step of the catalytic cycle brings about transmetalation to afford organopalladate anions. These organopalladate anions apparently undergo SN 2-type reactions with the AlkylX coupling partner. The resulting neutral complexes then release the cross-coupling products by reductive elimination. In gas-phase fragmentation experiments, the occurrence of reductive eliminations was observed for anionic analogues of the neutral complexes. Although the actual catalytic cycle is supposed to involve chiefly mononuclear palladium species, anionic palladium nanoclusters [Pdn R(DE)n ]- , (n=2, 4, 6; DE=diene) were also observed. At short reaction times, the dinuclear complexes usually predominated, whereas at longer times the tetra- and hexanuclear clusters became relatively more abundant. In parallel, the formation of palladium black pointed to continued aggregation processes. Thus, the present study directly shows dynamic behavior of the palladium/diene catalyst system and degradation of the active catalyst with increasing reaction time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA