Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(26): 9044-9050, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37327459

RESUMO

In numerous developing countries, the lower cost of subsidized liquid fuels such as kerosene compared to market-rate fuels often results in fuel adulteration. Such misuse of kerosene is hard to detect with conventional detection technologies because they are either time consuming, expensive, not sensitive enough or require well-equipped analytical laboratories. In this work, we developed an inexpensive and easy-to-use device for rapid and onsite detection of fuel adulteration. The working principle of our fuel adulteration detection is sensing changes in the mobility of fuel droplets on non-textured (i.e., smooth) and non-polar solid surfaces. Using our device, we demonstrated rapid detection of diesel (market-rate fuel) adulterated with kerosene (subsidized fuel) at concentrations an order of magnitude below typical adulteration concentrations. We envision that our inexpensive, easy-to-use, and field-deployable device as well as the design strategy will pave the way for novel fuel quality sensors.

2.
Langmuir ; 39(7): 2520-2528, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36749622

RESUMO

Existing oil-water filtration techniques require gravity or a pump as the driving force for separation. Here, we demonstrate transpiration-powered oil-water filtration using a synthetic tree, which operates pumplessly and against gravity. From top to bottom, our synthetic tree was composed of: a nanoporous "leaf" to generate suction via evaporation, a vertical array of glass tubes serving as the tree's xylem conduits, and filters attached to the tube inlets to act as the oil-excluding roots. When placing the tree in an oil emulsion bath, filtrate samples were measured to be 97-98% pure water using gravimetry and refractometry. The spontaneous oil-water separation offered by synthetic trees could be useful for applications such as oil spill cleanup, wastewater purification, and oil extraction.

3.
ACS Sustain Chem Eng ; 11(6): 2397-2403, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38162324

RESUMO

With the passage of the 2018 Farm Bill that removed hemp from the Controlled Substances Act altogether, production of hemp is experiencing a renaissance. Building on this revival and re-emergence of hemp, we designed and fabricated hemp-based sustainable and robust slippery surfaces by coating hemp paper with beeswax and subsequently infusing it with hemp oil. A wide variety of aqueous liquids and beverages easily slide on our hemp-based sustainable slippery surfaces, without leaving a trace. We also fabricated hemp-based sustainable slippery surfaces using different textured metals. Our hemp-based sustainable slippery metal surfaces display good icephobic and antithrombotic properties. With these attributes, we envision that our hemp-based sustainable slippery surfaces will pave the path to more safe, non-toxic, and biodegradable or recyclable slippery surfaces for applications in food packaging, anti-icing or de-icing coatings, and antithrombotic medical devices.

4.
Matter ; 5(12): 4502-4512, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36569514

RESUMO

Slippery surfaces are sought after due to their wide range of applications in self-cleaning, drag reduction, fouling-resistance, enhanced condensation, biomedical implants etc. Recently, non-textured, all-solid, slippery surfaces have gained significant attention because of their advantages over super-repellent surfaces and lubricant-infused surfaces. Currently, almost all non-textured, all-solid, slippery surfaces are hydrophobic. In this work, we elucidate the systematic design of non-textured, all-solid, slippery hydrophilic (SLIC) surfaces by covalently grafting polyethylene glycol (PEG) brushes to smooth substrates. Furthermore, we postulate a plateau in slipperiness above a critical grafting density, which occurs when the tethered brush size is equal to the inter-tether distance. Our SLIC surfaces demonstrate exceptional performance in condensation and fouling-resistance compared to non-slippery hydrophilic surfaces and slippery hydrophobic surfaces. Based on these results, SLIC surfaces constitute an emerging class of surfaces with the potential to benefit multiple technological landscapes ranging from thermofluidics to biofluidics.

5.
Mater Horiz ; 9(11): 2863-2871, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36070425

RESUMO

The recent global outbreaks of epidemics and pandemics have shown us that we are severely under-prepared to cope with infectious agents. Exposure to infectious agents present in biofluids (e.g., blood, saliva, urine etc.) poses a severe risk to clinical laboratory personnel and healthcare workers, resulting in hundreds of millions of hospital-acquired and laboratory-acquired infections annually. Novel technologies that can minimize human exposure through remote and automated handling of infectious biofluids will mitigate such risk. In this work, we present biofluid manipulators, which allow on-demand, remote and lossless manipulation of virtually any liquid droplet. Our manipulators are designed by integrating thermo-responsive soft actuators with superomniphobic surfaces. Utilizing our manipulators, we demonstrate on-demand, remote and lossless manipulation of biofluid droplets. We envision that our biofluid manipulators will not only reduce manual operations and minimize exposure to infectious agents, but also pave the way for developing inexpensive, simple and portable robotic systems, which can allow point-of-care operations, particularly in developing nations.


Assuntos
Pandemias , Saliva , Humanos , Pandemias/prevenção & controle , Surtos de Doenças , Sistemas Automatizados de Assistência Junto ao Leito , Pessoal de Saúde
6.
Langmuir ; 37(46): 13595-13601, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34752118

RESUMO

Separation operations are critical across a wide variety of manufacturing industries and account for about one-quarter of all in-plant energy consumption in the United States. Conventional liquid-liquid separation operations require either thermal or chemical treatment, both of which have a large environmental impact and carbon footprint. Consequently, there is a great need to develop sustainable, clean methodologies for separation of miscible liquid mixtures. The greatest opportunities to achieve this lie in replacing high-energy separation operations (e.g., distillation) with low-energy alternatives such as liquid-liquid extraction. One of the primary design challenges in liquid-liquid extraction is to maximize the interfacial area between two immiscible (e.g., polar and nonpolar) liquids for efficient mass transfer. However, this often involves energy-intensive methods including ultrasonication, pumping the feed and the extractant through packed columns with high tortuosity, or using a supercritical fluid as an extractant. Emulsifying the feed and the extractant, especially with a surfactant, offers a large interfacial area, but subsequent separation of emulsions can be energy-intensive and expensive. Thus, emulsions are typically avoided in conventional extraction operations. Herein, we discuss a novel, easily scalable, platform separation methodology termed CLEANS (continuous liquid-liquid extraction and in-situ membrane separation). CLEANS integrates emulsion-enhanced extraction with continuous, gravity-driven, membrane-based separation of emulsions into a single unit operation. Our results demonstrate that the addition of a surfactant and emulsification significantly enhance extraction (by >250% in certain cases), even for systems where the best extractants for miscible liquid mixtures are known. Utilizing the CLEANS methodology, we demonstrate continuous separation of a wide range of miscible liquid mixtures, including soluble organic molecules from oils, alcohols from esters, and even azeotropes.

7.
Langmuir ; 36(46): 13860-13871, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33167611

RESUMO

Droplet evaporation governs many heat- and mass-transfer processes germane in nature and industry. In the past 3 centuries, transient techniques have been developed to characterize the evaporation of sessile droplets. These methods have difficulty in reconciling transient effects induced by the droplet shape and size changes during evaporation. Furthermore, investigation of evaporation of microdroplets residing on wetting substrates, or fluids having low surface tensions (<30 mN/m), is difficult to perform using established approaches. Here, we use the steady method to study the microdroplet evaporation dynamics of low surface tension liquids. We start by employing the steady method to benchmark with water droplets having base radii (20 ≤ Rb ≤ 260 µm), apparent advancing contact angle (45° ≤ θa,app ≤ 162°), surface temperature (30 < Ts < 60 °C), and relative humidity (40% < ϕ < 60%). Following validation, evaporation of ethanol (≈22 mN/m), hexane (≈18 mN/m), and dodecane (≈25 mN/m) were studied for 90 ≤ Rb ≤ 400 µm and 10 < Ts < 25 °C. We elucidate the mechanisms governing the observed behavior using heat and mass transport scaling analysis during evaporation, demonstrating our steady technique to be particularly advantageous for microdroplets, where Marangoni and buoyant forces are negligible. Our work not only elucidates the droplet evaporation mechanisms of low surface tension liquids but also demonstrates the steady method as a means to study phase change processes.

8.
Sci Adv ; 6(2): eaax0746, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31950076

RESUMO

Droplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear. This article reports stable dropwise condensation on a smooth, solid, hydrophilic surface (θa = 38°) having low contact angle hysteresis (<3°). We show that the distribution of nano- to micro- to macroscale droplet sizes (about 100 nm to 1 mm) for coalescing droplets agrees well with the classical distribution on hydrophobic surfaces and elucidate that the wettability-governed dropwise-to-filmwise transition is mediated by the departing droplet Bond number. Our findings demonstrate that achieving stable dropwise condensation is not governed by surface intrinsic wettability, as assumed for the past eight decades, but rather, it is dictated by contact angle hysteresis.

9.
Nat Commun ; 10(1): 3220, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324790

RESUMO

Omniphobic membranes are attractive for membrane distillation (MD) because of their superior wetting resistance. However, a design framework for MD membrane remains incomplete, due to the complexity of omniphobic membrane fabrication and the lack of fundamental relationship between wetting resistance and water vapor permeability. Here we present a particle-free approach that enables rapid fabrication of monolithic omniphobic membranes for MD desalination. Our monolithic omniphobic membranes display excellent wetting resistance and water purification performance in MD desalination of hypersaline feedwater containing surfactants. We identify that a trade-off exists between wetting resistance and water vapor permeability of our monolithic MD membranes. Utilizing membranes with tunable wetting resistance and permeability, we elucidate the underlying mechanism of such trade-off. We envision that our fabrication method as well as the mechanistic insight into the wetting resistance-vapor permeability trade-off will pave the way for smart design of MD membranes in diverse water purification applications.


Assuntos
Destilação , Membranas Artificiais , Molhabilidade , Permeabilidade , Vapor , Purificação da Água/métodos
10.
ACS Nano ; 13(2): 1309-1323, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30624899

RESUMO

Coalescence-induced droplet jumping has the potential to enhance the efficiency of a plethora of applications. Although binary droplet jumping is quantitatively understood from energy and hydrodynamic perspectives, multiple aspects that affect jumping behavior, including droplet size mismatch, droplet-surface interaction, and condensate thermophysical properties, remain poorly understood. Here, we develop a visualization technique utilizing microdroplet dispensing to study droplet jumping dynamics on nanostructured superhydrophobic, hierarchical superhydrophobic, and hierarchical biphilic surfaces. We show that on the nanostructured superhydrophobic surface the jumping velocity follows inertial-capillary scaling with a dimensionless velocity of 0.26 and a jumping direction perpendicular to the substrate. A droplet mismatch phase diagram was developed showing that jumping is possible for droplet size mismatch up to 70%. On the hierarchical superhydrophobic surface, jumping behavior was dependent on the ratio between the droplet radius Ri and surface structure length scale L. For small droplets ( Ri ≤ 5 L), the jumping velocity was highly scattered, with a deviation of the jumping direction from the substrate normal as high as 80°. Surface structure length scale effects were shown to vanish for large droplets ( Ri > 5 L). On the hierarchical biphilic surface, similar but more significant scattering of the jumping velocity and direction was observed. Droplet-size-dependent surface adhesion and pinning-mediated droplet rotation were responsible for the reduced jumping velocity and scattered jumping direction. Furthermore, droplet jumping studies of liquids with surface tensions as low as 38 mN/m were performed, further confirming the validity of inertial-capillary scaling for varying condensate fluids. Our work not only demonstrates a powerful platform to study droplet-droplet and droplet-surface interactions but provides insights into the role of fluid-substrate coupling as well as condensate properties during droplet jumping.

11.
Mater Horiz ; 6(8): 1596-1610, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31903188

RESUMO

Virtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices. In the past decade, the hemocompatibility of super-repellent surfaces (i.e., surfaces that are extremely repellent to liquids) has been extensively investigated because such surfaces greatly reduce the blood-material contact area, which in turn reduces the area available for protein adsorption and blood cell or platelet adhesion, thereby offering the potential for improved hemocompatibility. In this review, we critically examine the progress made in characterizing the hemocompatibility of super-repellent surfaces, identify the unresolved challenges and highlight the opportunities for future research on developing medical implants and devices with super-repellent surfaces.

12.
Adv Mater Interfaces ; 6(18)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33042731

RESUMO

Due to their unique functionality, superomniphobic surfaces that display extreme repellency toward virtually any liquid, have a wide range of potential applications. However, to date, the mechanical durability of superomniphobic surfaces remains a major obstacle that prevents their practical deployment. In this work, a two-layer design strategy was developed to fabricate superomniphobic surfaces with improved durability via synergistic effect of interconnected hierarchical porous texture and micro/nano-mechanical interlocking. The improved mechanical robustness of these surfaces was assessed through water shear test, ultrasonic washing test, blade scratching test, and Taber abrasion test.

13.
Sci Adv ; 4(11): eaau3488, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30430135

RESUMO

When two liquid droplets coalesce on a superrepellent surface, the excess surface energy is partly converted to upward kinetic energy, and the coalesced droplet jumps away from the surface. However, the efficiency of this energy conversion is very low. In this work, we used a simple and passive technique consisting of superomniphobic surfaces with a macrotexture (comparable to the droplet size) to experimentally demonstrate coalescence-induced jumping with an energy conversion efficiency of 18.8% (i.e., about 570% increase compared to superomniphobic surfaces without a macrotexture). The higher energy conversion efficiency arises primarily from the effective redirection of in-plane velocity vectors to out-of-plane velocity vectors by the macrotexture. Using this higher energy conversion efficiency, we demonstrated coalescence-induced jumping of droplets with low surface tension (26.6 mN m-1) and very high viscosity (220 mPa·s). These results constitute the first-ever demonstration of coalescence-induced jumping of droplets at Ohnesorge number >1.

14.
Colloids Surf B Biointerfaces ; 166: 179-186, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579729

RESUMO

Bacterial infections are a serious issue for many implanted medical devices. Infections occur when bacteria colonize the surface of an implant and form a biofilm, a barrier which protects the bacterial colony from antibiotic treatments. Further, the anti-bacterial treatments must also be tailored to the specific bacteria that is causing the infection. The inherent protection of bacteria in the biofilm, differences in bacteria species (gram-positive vs. gram-negative), and the rise of antibiotic-resistant strains of bacteria makes device-acquired infections difficult to treat. Recent research has focused on reducing biofilm formation on medical devices by modifying implant surfaces. Proposed methods have included antibacterial surface coatings, release of antibacterial drugs from surfaces, and materials which promote the adhesion of non-pathogenic bacteria. However, no approach has proven successful in repelling both gram-positive and gram-negative bacteria. In this study, we have evaluated the ability of superhydrophobic surfaces to reduce bacteria adhesion regardless of whether the bacteria are gram-positive or gram-negative. Although superhydrophobic surfaces did not repel bacteria completely, they had minimal bacteria attached after 24 h and more importantly no biofilm formation was observed.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanotubos/química , Titânio/química , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
15.
ACS Appl Mater Interfaces ; 9(34): 29328-29336, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28771317

RESUMO

We utilized superomniphobic surfaces to systematically investigate the different regimes of coalescence-induced self-propulsion of liquid droplets with a wide range of droplet radii, viscosities, and surface tensions. Our results indicate that the nondimensional jumping velocity Vj* is nearly constant (Vj* ≈ 0.2) in the inertial-capillary regime and decreases in the visco-capillary regime as the Ohnesorge number Oh increases, in agreement with prior work. Within the visco-capillary regime, decreasing the droplet radius R0 results in a more rapid decrease in the nondimensional jumping velocity Vj* compared to increasing the viscosity µ. This is because decreasing the droplet radius R0 increases the inertial-capillary velocity Vic in addition to increasing the Ohnesorge number Oh.

16.
ACS Appl Mater Interfaces ; 9(31): 25656-25661, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28731320

RESUMO

Superomniphobic surfaces (i.e., surfaces that are extremely repellent to both high surface tension liquids like water and low surface tension liquid like oils) can be fabricated through a combination of surface chemistry that imparts low solid surface energy with a re-entrant surface texture. Recently, surface texturing with lasers has received significant attention because laser texturing is scalable, solvent-free, and can produce a monolithic texture on virtually any material. In this work, we fabricated nanostructured omniphobic and superomniphobic surfaces with a variety of materials using a simple, inexpensive and commercially available CO2 laser engraver. Further, we demonstrated that the nanostructured omniphobic and superomniphobic surfaces fabricated using our laser texturing technique can be used to design patterned surfaces, surfaces with discrete domains of the desired wettability, and on-surface microfluidic devices.

17.
Adv Mater ; 29(27)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28485512

RESUMO

Superomniphobic surfaces are extremely repellent to virtually all liquids. By combining superomniphobicity and shape memory effect, metamorphic superomniphobic (MorphS) surfaces that transform their morphology in response to heat are developed. Utilizing the MorphS surfaces, the distinctly different wetting transitions of liquids with different surface tensions are demonstrated and the underlying physics is elucidated. Both ex situ and in situ wetting transitions on the MorphS surfaces are solely due to transformations in morphology of the surface texture. It is envisioned that the robust MorphS surfaces with reversible wetting transition will have a wide range of applications including rewritable liquid patterns, controlled drug release systems, lab-on-a-chip devices, and biosensors.

18.
Adv Healthc Mater ; 6(4)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28000420

RESUMO

The hemocompatibility of superhemophobic surfaces is investigated and compared with that of hemophobic surfaces and hemophilic surfaces. This analysis indicates that only those superhemophobic surfaces with a robust Cassie-Baxter state display significantly lower platelet adhesion and activation. It is envisioned that the understanding gained through this work will lead to the fabrication of improved hemocompatible, superhemophobic medical implants.


Assuntos
Plaquetas/metabolismo , Teste de Materiais , Adesividade Plaquetária/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Plaquetas/citologia , Humanos , Propriedades de Superfície
19.
Ann Biomed Eng ; 45(2): 452-463, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27098219

RESUMO

In this study, we explore how blood-material interactions and hemodynamics are impacted by rendering a clinical quality 25 mm St. Jude Medical Bileaflet mechanical heart valve (BMHV) superhydrophobic (SH) with the aim of reducing thrombo-embolic complications associated with BMHVs. Basic cell adhesion is evaluated to assess blood-material interactions, while hemodynamic performance is analyzed with and without the SH coating. Results show that a SH coating with a receding contact angle (CA) of 160° strikingly eliminates platelet and leukocyte adhesion to the surface. Alternatively, many platelets attach to and activate on pyrolytic carbon (receding CA = 47), the base material for BMHVs. We further show that the performance index increases by 2.5% for coated valve relative to an uncoated valve, with a maximum possible improved performance of 5%. Both valves exhibit instantaneous shear stress below 10 N/m2 and Reynolds Shear Stress below 100 N/m2. Therefore, a SH BMHV has the potential to relax the requirement for antiplatelet and anticoagulant drug regimens typically required for patients receiving MHVs by minimizing blood-material interactions, while having a minimal impact on hemodynamics. We show for the first time that SH-coated surfaces may be a promising direction to minimize thrombotic complications in complex devices such as heart valves.


Assuntos
Plaquetas/metabolismo , Próteses Valvulares Cardíacas/efeitos adversos , Hemodinâmica , Leucócitos/metabolismo , Teste de Materiais , Trombose/metabolismo , Plaquetas/patologia , Adesão Celular , Humanos , Leucócitos/patologia , Resistência ao Cisalhamento , Trombose/etiologia , Trombose/fisiopatologia
20.
ACS Appl Mater Interfaces ; 8(34): 21962-7, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27541853

RESUMO

Fabrication of most superomniphobic surfaces requires complex process conditions or specialized and expensive equipment or skilled personnel. In order to circumvent these issues and make them end-user-friendly, we developed the free-standing, flexible, superomniphobic films. These films can be stored and delivered to the end-users, who can readily attach them to virtually any surface (even irregular shapes) and impart superomniphobicity. The hierarchical structure, the re-entrant texture, and the low solid surface energy render our films superomniphobic for a wide variety of liquids. We demonstrate that our free-standing, flexible, superomniphobic films have applications in enhanced chemical resistance and enhanced weight bearing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA