Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biomol Struct Dyn ; : 1-22, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655736

RESUMO

Visceral leishmaniasis (VL) is a vector-borne neglected tropical protozoan disease with high fatality and no certified vaccine. Conventional vaccine preparation is challenging and tedious. Here in this work, we created a global multiepitope subunit vaccination against VL utilizing innovative immunoinformatics technique based on the extensively conserved epitopic regions of the PrimPol protein of Leishmania donovani consisting of four subunits which were analyzed and studied, out of which DNA primase large subunit and DNA polymerase α subunit B were evaluated as antigens by Vaxijen 2.0. The multiepitope vaccine design includes a single adjuvant ß-defensins, eight CTL epitopes, eight HTL epitopes, seven linear BCL epitopes and one discontinuous BCL epitope to induce innate, cellular and humoral immune responses against VL. The Expasy ProtParam tool characterized the physiochemical parameters of the vaccine. At the same time, SOLpro evaluated our vaccine constructs to be soluble upon expression. We also modeled the stable tertiary structure of our vaccine construct through Robetta modeling for molecular docking studies with toll-like receptor proteins through HADDOCK 2.4. Simulations based on molecular dynamics revealed an intact vaccine and TLR8 complex, supporting our vaccine design's immunogenicity. Also, the immune simulation of our vaccine by the C-ImmSim server demonstrated the potency of the multiepitope vaccine construct to induce proper immune response for host defense. Codon optimization and in silico cloning of our vaccine further assured high expression. The outcomes of our study on multiepitope vaccine design significantly produced a potential candidate against VL and can potentially eradicate the disease in the future after clinical investigations.Communicated by Ramaswamy H. Sarma.

2.
Curr Microbiol ; 80(10): 318, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578562

RESUMO

Tuberculosis is the disease which is caused due to the contagion of Mycobacterium tuberculosis. The multidrug resistance Mycobacterium tuberculosis is the main hassle in the treatment of this worldwide health threats. Pantothenate synthase is a legitimate goal for rational drug designing against Mycobacterium tuberculosis. The enzyme is most active in the presence of magnesium or manganese. Marine algal cell wall is rich in sulfated polysaccharides such as fucoidans (brown algae), κ-carrageenans (red algae), and ulvan (green algae) with various favorable biological activities such as anticoagulant, antiviral, antioxidative, anticancer, and immunomodulating activities. In this study, we have modeled binding modes of selected known anti-tubercular compounds and different solvent extract against pantothenate synthase using advanced docking program AutoDock 4.2 tool. In our current study, in silico experiments were carried out to determine if fucoidan, κ-carrageenan, and ulvan sulfated polysaccharides could be a potential target against PANc (pantothenate synthetase), with the goal of identifying potential inhibitors as anti-TB leads targeting PANc for further wet lab validation. Two bioactive compounds were docked to the Mtb pantothenate synthetase protein binding site, with docking scores ranging from - 5.57 to - 2.73. κ-carrageenan had the best pose and docking score, with a Ligand fit score of - 5.815. Ulvan did not dock with the protein. The molecular dynamics simulations were conducted with substrate and ligand bounded fucoidan and κ-carrageenan for 150 ns and the protein Mtb pantothenate synthetase showed a stable conformation in the simulation, with tight amino acid contributions binding to the ligand molecule. RMSD characterizes the conformation and stability of protein ligand complexes, with higher fluctuations indicating low stability and minimal low-level fluctuations indicating equilibration and stability. The graph for RMSF shows significant peaks due to fluctuations in active site regions and other peaks indicating the adaptation of the ligand molecule to the protein binding pocket. From the molecular dynamics study, it is clear that the compounds are having good binding affinity in the active site. The root mean square deviation, root mean square fluctuations, and radius of gyration are supportive evidences which helped us to conclude that the compounds κ-carrageenan and fucoidan are suitable lead molecules for inhibiting pantothenate synthetase. Based on these evidences, the natural compounds from seaweeds can be tested clinically either alone or in combinations against the protein, which could facilitate the designing or the synthesis of new lead molecules as drugs against the tuberculosis.


Assuntos
Mycobacterium tuberculosis , Alga Marinha , Tuberculose , Humanos , Carragenina , Ligantes , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/metabolismo , Polissacarídeos , Antituberculosos/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37129743

RESUMO

Several phytochemicals with potential for bioactivity can be found in Polygonum minus (PM). The goal of this investigation was to establish the minimally toxic dose of PM for pharmaceutical use. To explain the stability and reactivity of the compounds under study, the lowest unoccupied molecular orbital (LUMO), the highest occupied molecular orbital (HOMO), and the natural bond orbital were all combined. Additionally, the cytotoxicity of the aqueous and ethanolic extract of PM on the (Hs888Lu) cell line was determined using the MTS Assay Kit (cell proliferation) (colorimetric). The hematological, hepatic, and renal functions were examined during the acute toxicity test on Sprague Dawley rats. SwissADME and ADMET were used to investigate the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the chemicals isolated from PM, including gallic acid, quercetin, rutin, and coumaric acid (PMCs). Molecular docking was used to examine the inhibitory effect against human H+/K+ ATPase, cyclooxygenase-2, and acetylcholinesterase. The outcomes indicated that neither the aqueous nor the ethanolic extract of PM is harmful. The development of plant-based medicine was made possible by the phenolic chemicals, primarily quercetin and rutin, which exhibit a considerable binding affinity to human H+/K+ ATPase, cyclooxygenase-2, and acetylcholinesterase.

4.
PLoS One ; 17(7): e0270795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830443

RESUMO

Hippocampal subfield atrophy is a prime structural change in the brain, associated with cognitive aging and neurodegenerative diseases such as Alzheimer's disease. Recent developments in genome-wide association studies (GWAS) have identified genetic loci that characterize the risk of hippocampal volume loss based on the processes of normal and abnormal aging. Polygenic risk scores are the genetic proxies mimicking the genetic role of the pre-existing vulnerabilities of the underlying mechanisms influencing these changes. Discriminating the genetic predispositions of hippocampal subfield atrophy between cognitive aging and neurodegenerative diseases will be helpful in understanding the disease etiology. In this study, we evaluated the polygenic risk of Alzheimer's disease (AD PGRS) for hippocampal subfield atrophy in 1,086 individuals (319 cognitively normal (CN), 591 mild cognitively impaired (MCI), and 176 Alzheimer's disease dementia (ADD)). Our results showed a stronger association of AD PGRS effect on the left hemisphere than on the right hemisphere for all the hippocampal subfield volumes in a mixed clinical population (CN+MCI+ADD). The subfields CA1, CA4, hippocampal tail, subiculum, presubiculum, molecular layer, GC-ML-DG, and HATA showed stronger AD PGRS associations with the MCI+ADD group than with the CN group. The subfields CA3, parasubiculum, and fimbria showed moderately higher AD PGRS associations with the MCI+ADD group than with the CN group. Our findings suggest that the eight subfield regions, which were strongly associated with AD PGRS are likely involved in the early stage ADD and a specific focus on the left hemisphere could enhance the early prediction of ADD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Atrofia/genética , Atrofia/patologia , Estudo de Associação Genômica Ampla , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
5.
J Biomol Struct Dyn ; 40(8): 3371-3384, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33200690

RESUMO

Myo-inositol is one of the vital nutritional requirements for the Leishmania parasites' survival and virulence in the mammalian host. . Myo-inositol-1-phosphate synthase (MIPS) is responsible for the synthesis of myo-inositol in Leishmania, which plays a vital role in Leishmania's virulence to mammalian hosts. Earlier studies suggest MIP synthase as a potential drug target against which valproate was used as a drug. So, MIP synthase can be used as a target for anti-leishmanial drugs, and its inhibition may help in preventing leishmaniasis. The present study aims to identify valproate's potent analogs as drugs against MIP synthase of L. donovani (Ld-MIPS) with minimum side effects and toxicity to host.In this study, the three-dimensional structure of Ld-MIPS was built, followed by active site prediction. Ligand-based virtual screening was done using hybrid similarity recognition methods. The best 123 valproate analogs were filtered based on their quantitative structure activity relationship (QSAR) properties and were docked against Ld-MIPS using FlexX, PyRx and iGEMDOCK software. The topmost five ligands were selected for molecular dynamics simulation and pharmacokinetic analysis based on the docking score. Simulation studies up to 30 ns revealed that all five lead molecules bound with Ld-MIPS throughout MD simulation and there was no variation in their backbone. All the chosen inhibitors exhibited good pharmacokinetics/ADMET predictions with an excellent absorption profile, metabolism, oral bioavailability, solubility, excretion, and minimal toxicity, suggesting that these inhibitors may further be developed as anti-leishmaniasis drugs to prevent the spread of leishmaniasis.Communicated by Ramaswamy H. Sarma.


Assuntos
Leishmania donovani , Leishmaniose , Animais , Inositol/farmacologia , Ligantes , Mamíferos , Simulação de Dinâmica Molecular , Mio-Inositol-1-Fosfato Sintase , Ácido Valproico/farmacologia
6.
J Biomol Struct Dyn ; 39(18): 6987-6999, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772816

RESUMO

Our present work studies the structure-based pharmacophore modeling and designing inhibitor against Gal3 receptor through molecular dynamics (MD) simulations extensively. Pharmacophore models play a key role in computer-aided drug discovery like in the case of virtual screening of chemical databases, de novo drug design and lead optimization. Structure-based methods for developing pharmacophore models are important, and there have been a number of studies combining such methods with the use of MD simulations to model protein's flexibility. The two potential antagonists SNAP 37889 and SNAP 398299 were docked and simulated for 250 ns and the results are analyzed and carried for the structure-based pharmacophore studies. This helped in identification of the subtype selectivity of the binding sites of the Gal3 receptor. Our work mainly focuses on identifying these binding site residues and to design more potent inhibitors compared to the previously available inhibitors through pharmacophore models. The study provides crucial insight into the binding site residues Ala2, Asp3, Ala4, Gln5, Phe24, Gln79, Ala80, Ile82, Tyr83, Trp88, His99, Ile102, Tyr103, Met106, Tyr157, Tyr161, Pro174, Trp176, Arg181, Ala183, Leu184, Asp185, Thr188, Trp248, His251, His252, Ile255, Leu256, Phe258, Trp259, Tyr270, Arg273, Leu274 and His277, which plays a significant role in the conformational changes of the receptor and helps to understand the inhibition mechanism. Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165897, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682817

RESUMO

Salt-inducible kinases 3 (SIK3) belong to the AMPK-related family of kinases, which have been implicated in the regulation of cell metabolism, cell polarity remodelling, and epithelial-mesenchymal transition. Elevated SIK3 expressions in breast cancer cells are shown to contribute to tumorigenesis; however, the underlying mechanism remains to be elucidated. In this study, we demonstrate that SIK3 expression is upregulated and concurrently high expression of SIK3 is associated with poor survival in breast cancer. Specifically, SIK3 knockdown revealed that SIK3 is required for the mTOR/Akt signaling pathway and proliferation of breast cancer cells. Furthermore, our findings showed that Emodin (EMO) combined with Berberine (BBR) significantly inhibited SIK3 activity, leading to reduced cell growth, increased cell cycle arrest and apoptosis in breast cancer cells, but not in non-malignant breast epithelial cell line. Mechanistic studies further reveal that EMO and BBR in combined treatment inhibited SIK3-potentiated mTOR-mediated aerobic glycolysis and cell growth in breast cancer cells. Moreover, combination treatments attenuate Akt signaling, thereby inducing G0/G1 phase cell cycle arrest and apoptosis of breast cancer cells in a SIK3-dependent manner. CRISPR/Cas9 or siRNA-mediated SIK3 knockout/knockdown showed an opposite trend in both the luminal and basal-like breast cancer. Collectively, our findings reveal that combination of EMO and BBR attenuates SIK3-driven tumor growth in breast cancer, and thus, EMO and BBR might be a novel SIK3 inhibitor explored into the prevention of breast cancer.


Assuntos
Berberina/farmacologia , Neoplasias da Mama/metabolismo , Emodina/farmacologia , Proteínas Quinases/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Neoplasias da Mama/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
8.
ACS Omega ; 5(8): 3969-3978, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149224

RESUMO

Over the past decade, the available crystal structures have almost doubled in Protein Data Bank (PDB) providing the research community with a series of similar crystal structures to choose from for future docking studies. With the steady growth in the number of high-resolution three-dimensional protein structures, ligand docking-based virtual screening of chemical libraries to a receptor plays a critical role in the drug discovery process by identifying new drug candidates. Thus, identifying potential candidates among all the available structures in a database for docking studies is of utmost importance. Our work examined whether one could use the resolution of a number of known structures, without considering other parameters, to choose a good experimental structure for various docking studies to find more useful drug leads. We expected that a good experimental structure for docking studies to be the one that gave favorable docking with the largest number of ligands among the experimental structures to be selected. We chose three protein test systems for our study, all belonging to the family of MAPK: (1) JNK1, (2) JNK2, and (3) JNK3. On analysis of the results, the best resolution structures showed significant variations from the expected values in their result, whereas the poor resolution structures proved to be better candidates for docking studies.

9.
J Biomol Struct Dyn ; 38(17): 5044-5061, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31755358

RESUMO

Understanding the dual inhibition mechanism of food derivative peptides targeting the enzymes (Renin and Angiotensin Converting enzyme) in the Renin Angiotensin System. Two peptides RALP and WYT were reported to possess antihypertensive activity targeting both renin and ACE, and we have used molecular docking and molecular dynamics simulation, in order to understand the underlying mechanism. The selected peptides (RALP and WYT) from the series of peptides reported were docked to renin and ACE and two binding modes were selected based on the binding energy, interaction pattern and clusters of docking simulation. The enzyme-peptide complexes for renin and ACE (Renin/RALP1,2; ACE/RALP1,2; Renin/WYT1,2 and ACE/WYT1,2) were subjected to molecular dynamics simulation. Our results identified that the peptides inhibiting renin, tends to move out of the binding pockets (S1' S2') which is critical for potent binding and occupies the less important pockets (S4 and S3). This could possibly be the reason for its low potency. Whereas, the same peptides targeting ACE, tends to be intact in the pocket because of the metal ion coordination and there is an ample room to improve on its efficacy. Our results further pave way for the biochemist, medicinal chemist to design dual peptides targeting the RAS effectively. Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Sistema Renina-Angiotensina , Anti-Hipertensivos , Simulação de Acoplamento Molecular , Peptídeos , Peptidil Dipeptidase A/metabolismo , Renina
10.
Environ Pollut ; 248: 599-608, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30836241

RESUMO

Growth of textile industries led to production of enormous dye varieties. These textile dyes are largely used, chemically stable and easy to synthesize. But they are recalcitrant and persist as less biodegradable pollutants when discharged into waterbodies. Potential use of enzyme-linked bioremediation of textile dyes will control their toxicity in waterbodies. Bioinformatics and Molecular docking tool provides an insight into remediation mechanism by predicting susceptibility of dye degradation using oxidoreductive enzymes. In this study, six dyes, Reactive Red F3B, Remazol Red RGB, Joyfix Red RB, Joyfix Yellow MR, Remazol Blue RGB and Turquoise CL-5B of azo, anthraquinone and phthalocyanine molecular class were identified as potential targets for degradation by laccase and azoreductase of Aeromonas hydrophila in addition to Lysinibacillus sphaericus through in silico docking tool BioSolveIT-FlexX. Azoreductase breaks azo bonds by ping-pong mechanism whereas laccase decolorizes dyes by free radical mechanism which is not specific in nature. Results were analyzed based on parameters like stability, catalytic action and selectivity for enzyme-dye interactions. Amino acids of enzymes interacted with several dyes substantiating variations in active site for enzyme-ligand binding affinity. This suggests the role of enzymes in decolorizing an extensive variety of textile dyes, thereby, aiding in understanding the enzyme mechanisms in Bioremediation.


Assuntos
Corantes/química , Lacase/química , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases/química , Indústria Têxtil , Poluentes Químicos da Água/química , Purificação da Água/métodos , Aeromonas hydrophila/enzimologia , Bacillus/enzimologia , Biodegradação Ambiental , Domínio Catalítico , Estrutura Molecular , Nitrorredutases , Águas Residuárias/química
11.
J Recept Signal Transduct Res ; 36(6): 543-557, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26906718

RESUMO

There has been a fair bit of understanding on the structure-function relationship of Aquaporins (AQPs) from plants and vertebrates obtained from available X-ray crystallography data. However, there is a lacuna in understanding the structure of AQPs from sanguinivorous insects like the mosquito where it plays a crucial role in survival. In this study, we have built homology models for the Aedes aegypti AQPs, identified key channel lining residues and compared the structure and sequence with orthodox AQPs. Although Ar/R filter residues of AaAQP1 were exactly similar to orthodox AQPs, AaAQP2 has a substitution at LE1position possibly making it less efficient in high capacity water transport. The huge difference in the selectivity filter region of AaAQP3 suggests a different transport property for this channel. The changes observed in the H5 position of the filter of AaAQP4 and AaAQP5 may explain the presence of a larger pore aperture to permit the passage of larger solute molecules. AaAQP6 possesses a completely hydrophobic filter like that in mammalian super aquaporins. The identified key residues are pivotal in understanding the mechanism of action and gating of these channels.


Assuntos
Aedes/química , Aquagliceroporinas/química , Aquaporinas/química , Relação Estrutura-Atividade , Aedes/genética , Animais , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Simulação por Computador
12.
Mol Biosyst ; 10(12): 3188-98, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25259728

RESUMO

The nociceptin receptor (NOPR) is an orphan G protein-coupled receptor that contains seven transmembrane helices. NOPR has a distinct mechanism of activation, though it shares a significant homology with other opioid receptors. Previously there have been reports on homology modeling of NOPR and also molecular dynamics simulation studies for a short period. Recently the crystal structure of NOPR was reported. In this study, we analyzed the time dependent behavior of NOPR docked with clinically important agonist molecules such as NOP (natural agonist) peptide and compound 10 (SCH-221510 derivative) using molecular dynamics simulations (MDS) for 100 ns. Molecular dynamics simulations of NOPR-agonist complexes allowed us to refine the system and to also identify stable structures with better binding modes. Structure activity relationships (SAR) for SCH221510 derivatives were investigated and reasons for the activities of these derivatives were determined. Our molecular dynamics trajectory analysis of NOPR-peptide and NOPR-compound 10 complexes found residues to be crucial for binding. Mutagenesis studies on the residues identified from our analysis could prove useful. Our results could also provide useful information in the structure-based drug design of novel and potent agonists targeting NOPR.


Assuntos
Simulação de Dinâmica Molecular , Receptores Opioides/agonistas , Receptores Opioides/química , Animais , Compostos Azabicíclicos/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Camundongos , Simulação de Acoplamento Molecular , Peptídeos Opioides/química , Conformação Proteica , Receptor de Nociceptina , Nociceptina
13.
Bioorg Med Chem Lett ; 24(3): 928-33, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24424131

RESUMO

C-C chemokine receptor type 1 (CCR1) is a chemokine receptor with seven transmembrane helices and it belongs to the G-Protein Coupled receptor (GPCR) family. It plays an important role in rheumatoid arthritis, organ transplant rejection, Alzheimer's disease and also causes inflammation. Because of its role in disease processes, CCR1 is considered to be an important drug target. In the present study, we have performed three dimensional Quantitative Structure activity relationship (3D-QSAR) studies on a series of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanone derivatives targeting CCR1. Homology modeling of CCR1 was performed based on a template structure (4EA3) which has a high sequence identity and resolution. The highest active molecule was docked into this model. Ligand-based and Receptor-based quantitative structure-activity relationship (QSAR) study was performed and CoMFA models with reasonable statistics was developed for both ligand-based (q(2)=0.606; r(2)=0.968) and receptor-guided (q(2)=0.640; r(2)=0.932) alignment methods. Contour map analyses identified favorable regions for high affinity binding. The docking results highlighted the important active site residues. Tyr113 was found to interact with the ligand through hydrogen bonding. This residue has been considered responsible for anchoring ligands inside the active site. Our results could also be helpful to understand the inhibitory mechanism of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanone derivatives thereby to design more effective ligands in the future.


Assuntos
Simulação por Computador , Modelos Químicos , Receptores CCR1/antagonistas & inibidores , Domínio Catalítico , Humanos , Ligantes , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Relação Quantitativa Estrutura-Atividade
14.
Mol Biosyst ; 10(2): 281-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24291818

RESUMO

Tankyrases (TNKS) belong to the poly(ADP-ribose)polymerase (PARP) protein super family and play a vital role in the Wnt/ß-catenin signaling pathway. TNKS is a potential target for therapeutic intervention against various cancers, heritable diseases (e.g. cherubism) and implications in the replication of herpes simplex virus (HSV). The recent discovery of the structure of TNKS with an IWR1 inhibitor has provided insight into the binding modes which are specific for the TNKS protein which will aid in the development of drugs that are specific for the TNKS protein. The current study investigates molecular interactions between the induced pocket of TNKS1 and TNKS2 with an IWR1 compound using computational approaches. Molecular docking analysis of IWR1 at the induced pocket of TNKS1 and TNKS2 was performed. The resulting protein-ligand complexes were simulated for a timescale of 100 ns. Results revealed the stable binding of IWR1 at the induced pocket of TNKS1 and TNKS2 proteins. Apart from active site amino acids, π-π stack paring interactions were also crucial for the protein-ligand binding and stability of the complex. Further, energy-optimized pharmacophore mapping was performed and the resulting pharmacophore model contained a four (TNKS1-IWR1) and five (TNKS2-IWR1) featured sites. Based on the pharmacophore models, the best inhibitors were screened from the ZINC natural product compound database and these could be used as potential drugs against TNKS1 and TNKS2.


Assuntos
Inibidores Enzimáticos/metabolismo , Imidas/metabolismo , Quinolinas/metabolismo , Tanquirases/química , Tanquirases/metabolismo , Sequência de Aminoácidos , Asparagina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Produtos Farmacêuticos , Inibidores Enzimáticos/farmacologia , Humanos , Imidas/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Quinolinas/farmacologia , Tanquirases/antagonistas & inibidores , Termodinâmica , Tirosina/metabolismo , Zinco
15.
Arch Pharm Res ; 37(8): 1001-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24338530

RESUMO

The HIV-1 envelope glycoprotein gp120 plays a vital role in the entry of virus into the host cells and is a potential antiviral drug target. Recently, indole derivatives have been reported to inhibit HIV-1 through binding to gp120, and this prevents gp120 and CD4 interaction to inhibit the infectivity of HIV-1. In this work, molecular docking, molecular dynamics (MD) and three-dimensional quantitative structure-activity relationship studies were carried out. Molecular docking studies of the most active and the least active compounds were performed to identify important residues in the binding pocket. We refined the docked poses by MD simulations which resulted in conformational changes. After equilibration, the structure of the ligand and receptor complex was stable. Therefore, we just took the last snapshot as the representative binding pose for this study. This pose for the most active inhibitor was used as a template for receptor-based alignment which was subsequently used for comparative molecular field analysis. Resultant 3D contour maps suggested smaller substituents are desirable at the 7-position of indole ring to avoid steric interactions with Ser375, Phe382 and Tyr384 residues in the active site. These results can be exploited to develop potential leads and for structure-based drug design of novel HIV-1 inhibitors.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Análise dos Mínimos Quadrados , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
16.
Anticancer Agents Med Chem ; 13(10): 1636-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23796247

RESUMO

P-glycoprotein (P-gp) is responsible for the multidrug resistance (MDR) and involved in the expulsion of xenobiotics out of cell. In this paper, homology modeling, docking and molecular dynamics simulation (MDS) was performed for the human P-gp desmosdumotin inhibitor. Docking study was carried out in the P-gp nucleotide binding domain 2 (NBD2). The desmosdumotin binding region occupied the ATP binding region (flavonoid binding region) with hydrophobic and hydrophilic interactions. Analysis of root mean square deviations (RMSDs) of active site residues indicated the binding site residues were stable throughout the simulation period. As shown in previous results with structurally similar flavonoid compounds, van der Waals and electrostatic interactions were found to be important factors for the desmosdumotin-NBD2 inhibition. Docking results suggest that desmosdumotin interacts with the NBD2 through both hydrogen bonds (Lys1076, Ser1077 and Thr1078) and hydrophobic interactions (Tyr1044, Val1052, Gly1073 and Cys1074). In addition, the involvement of other amino-acids was identified via MDS (Lys1076 and Ser1077 for hydrogen bonds and Tyr1044, Val1052, Gly1073, Cys1074 and Gly1075 for hydrophobic interactions). Thus, current preliminary model of interactions between desmosdumotin-NBD2 could be helpful to understand the in-depth inhibition mechanism of P-gp at NBD2 level and to design more potent inhibitors which could effectively overcome MDR of anticancer agents.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/química , Alcenos/química , Antineoplásicos/química , Cetonas/química , Simulação de Acoplamento Molecular , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Sequência de Aminoácidos , Domínio Catalítico , Bases de Dados de Proteínas , Resistencia a Medicamentos Antineoplásicos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Eletricidade Estática , Homologia Estrutural de Proteína
17.
Chem Biol Drug Des ; 81(6): 757-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23461969

RESUMO

In this study, we report on modeling of galanin receptor type 3 and its interaction with agonist and antagonists using in silico methodologies. Comparative structural modeling of galanin receptor type 3 was based on multiple templates. With the availability of reported selective galanin receptor type 3 antagonists, docking was carried out into the predicted binding site. Similarly, galanin, a reported agonist, was also modeled and then docked into the receptor's active site. CoMFA models were developed using ligand-based (q(2)  = 0.537, r(2)  = 0.961, noc = 5), and receptor-guided (docked mode 1: q(2)  = 0.574, r(2)  = 0.946, noc = 5), (docked mode 2: q(2)  = 0.499, r(2)  = 0.954, noc = 5) alignment schemes. CoMFA contour analysis revealed that bulky substitution around the meta position of the phenyl ring, as well as optimal substitution (para) of the phenyl ring, could produce molecules with improved activity. We also found that Gln79, Ile82, Asp86, Trp88, His99, Ile102, Tyr103, Glu170, Pro174, Ala175, Asp185, Arg273, His277, and Tyr281 are crucial, and mutational studies on these residues could be helpful. The results obtained from this study can further be exploited for structure-based drug design and also help the researchers to identify novel antagonists targeting galanin receptor type 3.


Assuntos
Galanina/metabolismo , Indóis/metabolismo , Modelos Moleculares , Pirrolidinas/metabolismo , Receptor Tipo 3 de Galanina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Galanina/química , Indóis/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Pirrolidinas/química , Relação Quantitativa Estrutura-Atividade , Receptor Tipo 3 de Galanina/agonistas , Receptor Tipo 3 de Galanina/antagonistas & inibidores , Alinhamento de Sequência , Termodinâmica
18.
Arch Pharm Res ; 36(1): 6-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23325486

RESUMO

Chemokine receptor 5 (CCR5) is an important receptor used by human immunodeficiency virus type 1 (HIV-1) to gain viral entry into host cell. In this study, we used a combined approach of comparative modeling, molecular docking, and three dimensional quantitative structure activity relationship (3D-QSAR) analyses to elucidate detailed interaction of CCR5 with their inhibitors. Docking study of the most potent inhibitor from a series of compounds was done to derive the bioactive conformation. Parameters such as random selection, rational selection, different charges and grid spacing were utilized in the model development to check their performance on the model predictivity. Final comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were chosen based on the rational selection method, Gasteiger-Hückel charges and a grid spacing of 0.5 Å. Rational model for CoMFA (q(2) = 0.722, r(2) = 0.884, Q(2) = 0.669) and CoMSIA (q(2) = 0.712, r(2) = 0.825, Q(2) = 0.522) was obtained with good statistics. Mapping of contour maps onto CCR5 interface led us to better understand of the ligand-protein interaction. Docking analysis revealed that the Glu283 is crucial for interaction. Two new amino acid residues, Tyr89 and Thr167 were identified as important in ligand-protein interaction. No site directed mutagenesis studies on these residues have been reported.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Antagonistas dos Receptores CCR5 , Simulação de Acoplamento Molecular , Receptores CCR5/química , Sequência de Aminoácidos , Sítios de Ligação , Análise dos Mínimos Quadrados , Ligantes , Dados de Sequência Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
19.
J Biomol Struct Dyn ; 31(11): 1251-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23153179

RESUMO

Chemokine receptor 5 (CCR5) is an integral membrane protein that is utilized during human immunodeficiency virus type-1 entry into host cells. CCR5 is a G-protein coupled receptor that contains seven transmembrane (TM) helices. However, the crystal structure of CCR5 has not been reported. A homology model of CCR5 was developed based on the recently reported CXCR4 structure as template. Automated docking of the most potent (14), medium potent (37), and least potent (25) CCR5 antagonists was performed using the CCR5 model. To characterize the mechanism responsible for the interactions between ligands (14, 25, and 37) and CCR5, membrane molecular dynamic (MD) simulations were performed. The position and orientation of ligands (14, 25, and 37) were found to be changed after MD simulations, which demonstrated the ability of this technique to identify binding modes. Furthermore, at the end of simulation, it was found that residues identified by docking were changed and some new residues were introduced in the proximity of ligands. Our results are in line with the majority of previous mutational reports. These results show that hydrophobicity is the determining factor of CCR5 antagonism. In addition, salt bridging and hydrogen bond contacts between ligands (14, 25, and 37) and CCR5 are also crucial for inhibitory activity. The residues newly identified by MD simulation are Ser160, Phe166, Ser180, His181, and Trp190, and so far no site-directed mutagenesis studies have been reported. To determine the contributions made by these residues, additional mutational studies are suggested. We propose a general binding mode for these derivatives based on the MD simulation results of higher (14), medium (37), and lower (25) potent inhibitors. Interestingly, we found some trend for these inhibitors such as, salt bridge interaction between basic nitrogen of ligand and acidic Glu283 seemed necessary for inhibitory activity. Also, two aromatic pockets (pocket I - TM1-3 and pocket II - TM3-6) were linked by the central polar region in TM7, and the simulated inhibitors show important interactions with the Trp86, Tyr89, Tyr108, Phe112, Ile198, Tyr251, Leu255, and Gln280 and Glu283 residues. These results shed light on the usage of MD simulation to identify more stable, optimal binding modes of the inhibitors.


Assuntos
Antagonistas dos Receptores CCR5 , HIV-1/fisiologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Cristalografia por Raios X , Óxidos N-Cíclicos/química , Humanos , Dados de Sequência Molecular , Piperidinas/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores CCR5/química , Internalização do Vírus
20.
PLoS One ; 7(3): e32864, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479344

RESUMO

Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and ß2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å), we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2) and Glu283 (CCR5) are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design.


Assuntos
Modelos Moleculares , Estrutura Terciária de Proteína , Receptores CCR2/química , Receptores CCR5/química , Sequência de Aminoácidos , Benzamidas/química , Benzamidas/metabolismo , Sítios de Ligação/genética , Cicloexanos/química , Cicloexanos/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Maraviroc , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Molecular , Ligação Proteica , Pirrolidinas/química , Pirrolidinas/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Homologia de Sequência de Aminoácidos , Triazóis/química , Triazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA