Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Transl Immunology ; 11(5): e1392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573979

RESUMO

Objective: Antitumor viral vaccines, and more particularly poxviral vaccines, represent an active field for clinical development and translational research. To improve the efficacy and treatment outcome, new viral vectors are sought, with emphasis on their abilities to stimulate innate immunity, to display tumor antigens and to induce a specific T-cell response. Methods: We screened for a new poxviral backbone with improved innate and adaptive immune stimulation using IFN-α secretion levels in infected PBMC cultures as selection criteria. Assessment of virus effectiveness was made in vitro and in vivo. Results: The bovine pseudocowpox virus (PCPV) stood out among several poxviruses for its ability to induce significant secretion of IFN-α. PCPV produced efficient activation of human monocytes and dendritic cells, degranulation of NK cells and reversed MDSC-induced T-cell suppression, without being offensive to activated T cells. A PCPV-based vaccine, encoding the HPV16 E7 protein (PCPV-E7), stimulated strong antigen-specific T-cell responses in TC1 tumor-bearing mice. Complete regression of tumors was obtained in a CD8+ T-cell-dependent manner after intratumoral injection of PCPV-E7, followed by intravenous injection of the cancer vaccine MVA-E7. PCPV also proved active when injected repeatedly intratumorally in MC38 tumor-bearing mice, generating tumor-specific T-cell responses without encoding a specific MC38 antigen. From a translational perspective, we demonstrated that PCPV-E7 effectively stimulated IFN-γ production by T cells from tumor-draining lymph nodes of HPV+-infected cancer patients. Conclusion: We propose PCPV as a viral vector suitable for vaccination in the field of personalised cancer vaccines, in particular for heterologous prime-boost regimens.

2.
Cell ; 185(7): 1189-1207.e25, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35325594

RESUMO

Macrophage infiltration is a hallmark of solid cancers, and overall macrophage infiltration correlates with lower patient survival and resistance to therapy. Tumor-associated macrophages, however, are phenotypically and functionally heterogeneous. Specific subsets of tumor-associated macrophage might be endowed with distinct roles on cancer progression and antitumor immunity. Here, we identify a discrete population of FOLR2+ tissue-resident macrophages in healthy mammary gland and breast cancer primary tumors. FOLR2+ macrophages localize in perivascular areas in the tumor stroma, where they interact with CD8+ T cells. FOLR2+ macrophages efficiently prime effector CD8+ T cells ex vivo. The density of FOLR2+ macrophages in tumors positively correlates with better patient survival. This study highlights specific roles for tumor-associated macrophage subsets and paves the way for subset-targeted therapeutic interventions in macrophages-based cancer therapies.


Assuntos
Neoplasias da Mama , Macrófagos , Mama/imunologia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos , Feminino , Receptor 2 de Folato , Humanos , Linfócitos do Interstício Tumoral , Prognóstico
3.
Int Rev Cell Mol Biol ; 348: 69-121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31810556

RESUMO

Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.


Assuntos
Apresentação de Antígeno/imunologia , Animais , Células Dendríticas/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia
4.
PLoS One ; 14(6): e0218735, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31237902

RESUMO

Canine circovirus (CanineCV) was detected, together with canine parvovirus (CPV), in samples from an outbreak of fatal gastroenteritis in dogs in Argentina. We obtained the full-length genome of this recently discovered virus by overlapping PCR, designated strain UBA-Baires. Sequence analysis revealed a highly conserved genome but also showed several unique mutations in amino acids from the capsid protein that have not been previously reported. Phylogenetic analysis shows that this strain is more closely related to European strains than to viruses detected in North America or Asia. Although the pathogenic role of CanineCV in dogs is still unclear, this study highlights the importance of CanineCV as a coinfecting virus in disease development. To our knowledge, this is the first report of the involvement of CanineCV in severe clinical disease in dogs in South America. Our results expand our information on the geographical extent of this virus and contribute to the understanding of its role in disease.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Doenças do Cão/virologia , Substituição de Aminoácidos , Animais , Argentina/epidemiologia , Proteínas do Capsídeo/genética , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/classificação , Circovirus/patogenicidade , DNA Viral/genética , Surtos de Doenças/veterinária , Doenças do Cão/epidemiologia , Cães , Gastroenterite/veterinária , Gastroenterite/virologia , Genoma Viral , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus Canino/genética , Filogenia , América do Sul/epidemiologia
5.
Immunol Rev ; 272(1): 97-108, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27319345

RESUMO

As a population, dendritic cells (DCs) appear to be the best cross-presenters of internalized antigens on major histocompatibility complex class I molecules in the mouse. To do this, DCs have developed a number of unique and dedicated means to control their endocytic and phagocytic pathways: among them, the capacity to limit acidification of their phagosomes, to prevent proteolytic degradation, to delay fusion of phagosomes to lysosomes, to recruit ER proteins to phagosomes, and to export phagocytosed antigens to the cytosol. The regulation of phagocytic functions, and thereby of antigen processing and presentation by innate signaling, represents a critical level of integration of adaptive and innate immune responses. Understanding how innate signals control antigen cross-presentation is critical to define effective vaccination strategies for CD8(+) T-cell responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Apresentação Cruzada , Células Dendríticas/imunologia , Fagocitose , Imunidade Adaptativa , Animais , Exoftalmia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Inata , Ativação Linfocitária
6.
Bio Protoc ; 6(22)2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28239619

RESUMO

Antigen presentation by MHC class I molecules, also referred to as cross-presentation, elicits cytotoxic immune responses. In particular, dendritic cells (DC) are the most proficient cross-presenting cells, since they have developed unique means to control phagocytic and degradative pathways. This protocol allows the evaluation of antigen cross-presentation both in vitro (by using bone marrow-derived DC) and ex vivo (by purifying CD8+ DC from spleen after incorporation of particulate antigen) using ovalbumin (OVA)-coupled particles. Cross-presentation efficiency is measured by three different readouts: the B3Z hybridoma T cell line (Karttunen et al., 1992) and stimulation of antigen-specific CD8+ T cells (OT-I) (Kurts et al., 1996), either analyzing OT-I activation by CD69 expression or OT-I proliferation after labeling them with carboxyfluorescein succinimidyl ester (CFSE). By using this approach, we could show recently that DCs are able to increase cross-presentation efficiency transiently upon engagement of TLR4 (Alloatti et al., 2015).

7.
Bio Protoc ; 6(22)2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28239620

RESUMO

Professional phagocytes internalize self and non-self particles by phagocytosis to initiate innate immune responses. After internalization, the formed phagosome matures through fusion and fission events with endosomes and lysosomes to obtain a more acidic, oxidative and hydrolytic environment for the degradation of its cargo. Interestingly, phagosome maturation kinetics differ between cell types and cell activation states. This protocol allows to quantify phagosome maturation kinetics on a single organelle level in different types of phagocytes using flow cytometry. Here, ovalbumin (OVA)-coupled particles are used as phagocytosis model system in dendritic cells (DC), which are internalized by phagocytosis. After different time points, phagosome maturation parameters, such as phagosomal degradation of OVA and acquisition of lysosomal proteins (like LAMP-1), can be measured simultaneously in a highly quantitative manner by flow organellocytometry. These read-outs can be correlated to other phagosomal functions, for example antigen degradation, processing and loading in DC.

8.
Immunity ; 43(6): 1087-100, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682983

RESUMO

The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.


Assuntos
Apresentação de Antígeno/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Feminino , Citometria de Fluxo , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagossomos/imunologia , RNA Interferente Pequeno , Transfecção , Proteínas rab de Ligação ao GTP/imunologia
9.
Antioxid Redox Signal ; 18(6): 714-29, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22827577

RESUMO

SIGNIFICANCE: The NADPH oxidase 2 (NOX2) is known to play a major role in innate immunity for several decades. Phagocytic cells provide host defense by ingesting microbes and destroy them by different mechanisms, including the generation of reactive oxygen species (ROS) by NOX2, a process known as oxidative burst. The phagocytic pathway of dendritic cells (DCs), highly adapted to antigen processing, has been shown to display remarkable differences compared to other phagocytes. Contrary to macrophages and neutrophils, the main function of DC phagosomes is antigen presentation rather than pathogen killing or clearance of cell debris. RECENT ADVANCES: In the last few years, it became clear that NOX2 is also involved in the establishment of adaptive immunity. Several studies support the idea of a relationship between antigen presentation and the level of antigen degradation, the latter one being regulated by the pH and ROS within phagosomes. CRITICAL ISSUES: The regulation of phagosomal pH exerted by NOX2, and thereby of the efficacy of antigen cross-presentation in DCs, represents a clear illustration of how NOX2 can influence CD8(+) T lymphocyte responses. In this review, we want to put emphasis on the relationship between ROS generation and antigen processing and presentation, since there is growing evidence that the low levels of ROS generated by DCs play an important role in these processes. FUTURE DIRECTIONS: In the next years, it will be interesting to unravel possible mechanisms involved and to find other possible connections between NOX family members and adaptive immune responses.


Assuntos
Apresentação de Antígeno/imunologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Fagossomos , Espécies Reativas de Oxigênio/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/imunologia , NADPH Oxidase 2 , NADPH Oxidases/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagossomos/imunologia , Fagossomos/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(36): 14556-61, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908282

RESUMO

Phagocytosis plays a critical role in both innate and adaptive immunity. Phagosomal fusion with late endosomes and lysosomes enhances proteolysis, causing degradation of the phagocytic content. Increased degradation participates in both innate protection against pathogens and the production of antigenic peptides for presentation to T lymphocytes during adaptive immune responses. Specific ligands present in the phagosomal cargo influence the rate of phagosome fusion with lysosomes, thereby modulating both antigen degradation and presentation. Using a combination of cell sorting techniques and single phagosome flow cytometry-based analysis, we found that opsonization with IgG accelerates antigen degradation within individual IgG-containing phagosomes, but not in other phagosomes present in the same cell and devoid of IgG. Likewise, IgG opsonization enhances antigen presentation to CD4(+) T lymphocytes only when antigen and IgG are present within the same phagosome, whereas cells containing phagosomes with either antigen or IgG alone failed to present antigen efficiently. Therefore, individual phagosomes behave autonomously, in terms of both cargo degradation and antigen presentation to CD4(+) T cells. Phagosomal autonomy could serve as a basis for the intracellular discrimination between self and nonself antigens, resulting in the preferential presentation of peptides derived from opsonized, nonself antigens.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/fisiologia , Fagocitose/imunologia , Fagossomos/imunologia , Animais , Células Dendríticas/imunologia , Citometria de Fluxo , Imunoglobulina G/imunologia , Lisossomos/imunologia , Camundongos , Microesferas , Proteínas Opsonizantes/metabolismo , Ovalbumina
11.
Acta Vet Scand ; 53: 37, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21651813

RESUMO

BACKGROUND: Bovine herpesvirus 5 (BoHV-5) is an alphaherpesvirus responsible for meningoencephalitis in young cattle and it is antigenically and genetically related to bovine herpesvirus 1. BoHV-5 outbreaks are sporadic and restricted in their geographical distribution, being mostly detected in the Southern hemisphere. The N569 and A663 strains are prototypes of the "a" and "b" subtypes of BoHV-5, however, scarce information about their in vitro and in vivo properties is currently available. METHODS: For the in vitro comparison between BoHV-5 A663 and N569 strains, viral growth kinetics, lysis and infection plaque size assays were performed. Additionally, an experimental infection of cattle with BoHV-5 A663 and N569 strains was carried out. Viral excretion, development of neurological signs, presence of specific antibodies in serum and nasal swabs and presence of latent BoHV-5 DNA in trigeminal ganglion, were analyzed. Histopathological examination of samples belonging to inoculated animals was also performed. RESULTS: The lytic capacity and the cell-to-cell spread was lower for the A663 strain compared to the N569 strain, however, the production of total infectious viral particles was similar between both strains. Concerning the in vivo properties, the A663 and N569 strains are able to induce similar degrees of pathogenicity in cattle. CONCLUSIONS: Our results show that the A663 strain used in this study is less adapted to in vitro replication in MDBK cells than the N569 strain and, although slight differences were observed, both strains are able to induce a similar degree of virulence in the natural host.


Assuntos
Doenças dos Bovinos/virologia , Encefalite Viral/veterinária , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 5/fisiologia , Meningoencefalite/veterinária , Animais , Bovinos , Doenças dos Bovinos/fisiopatologia , Doenças dos Bovinos/transmissão , Linhagem Celular , Encefalite Viral/fisiopatologia , Encefalite Viral/transmissão , Encefalite Viral/virologia , Infecções por Herpesviridae/fisiopatologia , Infecções por Herpesviridae/transmissão , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 5/classificação , Herpesvirus Bovino 5/patogenicidade , Meningoencefalite/fisiopatologia , Meningoencefalite/transmissão , Meningoencefalite/virologia , Virulência
12.
Vet Microbiol ; 153(3-4): 361-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21665386

RESUMO

The US3 protein is a unique protein kinase only present in the Alphaherpesvirinae subfamily of the herpesviruses. Studies performed with several alphaherpesviruses demonstrated that the US3 protein is involved in cytoskeleton modifications during viral infection and displays anti-apoptotic activity. However, the US3 protein of BoHV-5 has not been studied up to now. As reported for other alphaherpesviruses, our results showed that BoHV-5 US3 confers resistance against apoptosis and induces cytoskeletal reorganization leading to cell rounding, actin stress fiber breakdown and cell projections that interconnect cells. The expression of a kinase-dead version of BoHV-5 US3 showed that the anti-apoptotic activity and the induction of cell projections are kinase-dependent whereas kinase activity is not absolutely required for actin stress fiber breakdown. Besides, the kinase-dead version of US3, but not the wild type protein, was found excluded from the nucleus. These results constitute the first report on the BoHV-5 US3 functions, and highlight that there are functional differences and similarities among US3 proteins of different alphaherpesviruses.


Assuntos
Actinas/metabolismo , Apoptose/fisiologia , Citoesqueleto/metabolismo , Herpesvirus Bovino 5/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Animais , Bovinos , Núcleo Celular/enzimologia , Chlorocebus aethiops , Citoplasma/enzimologia , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Serina-Treonina Quinases/genética , Células Vero , Proteínas Virais/genética
13.
BMC Vet Res ; 7: 19, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21592326

RESUMO

BACKGROUND: Interspecific recombinant viruses R1ΔgC and R2ΔgI were isolated after in vitro co-infection with BoHV-1 and BoHV-5, two closely related alphaherpesviruses that infect cattle. The genetic characterization of R1ΔgC and R2ΔgI showed that they are composed of different sections of the parental genomes. The aim of this study was the characterization of the in vivo behavior of these recombinants in the natural host. RESULTS: Four groups of four 3-month-old calves of both genders were intranasally inoculated with either the recombinant or parental viruses. A control group of two animals was also included. Viral excretion and clinical signs were monitored after infection. Histopathological examination of the central nervous system (CNS) was performed and the establishment of latency in trigeminal ganglia was analyzed by PCR. The humoral response was also evaluated using ELISA tests. Three out of four animals from the BoHV-5 infected group excreted virus for 4-10 days. Two calves shed R1ΔgC virus for one day. In R2ΔgI and BoHV-1.2ΔgCΔgI groups, infectious virus was isolated only after two or three blind passages. None of the infected animals developed neurological signs, although those infected with BoHV-5 showed histopathological evidence of viral infection. Latent viral DNA was detected in at least one calf from each infected group. Serum and/or mucosal antibodies were detected in all groups. CONCLUSION: Both BoHV-1/-5 recombinants and the BoHV-1 parental strain are attenuated in calves, although they are able to replicate in animals at low rates and to establish latent infections.


Assuntos
Doenças dos Bovinos/virologia , Encefalite Viral/veterinária , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 5/genética , Meningoencefalite/veterinária , Animais , Bovinos , Doenças dos Bovinos/imunologia , Encefalite Viral/imunologia , Encefalite Viral/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/patogenicidade , Herpesvirus Bovino 1/fisiologia , Herpesvirus Bovino 5/patogenicidade , Herpesvirus Bovino 5/fisiologia , Imunidade Humoral/imunologia , Técnicas In Vitro , Masculino , Meningoencefalite/imunologia , Meningoencefalite/virologia , Recombinação Genética/genética , Gânglio Trigeminal/virologia , Latência Viral/genética , Replicação Viral/genética
14.
Vet J ; 184(2): 138-45, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19409823

RESUMO

Bovine herpesvirus 5 (BoHV-5) is an alphaherpesvirus responsible for meningoencephalitis in young cattle and is closely antigenically and genetically related to bovine herpesvirus 1 (BoHV-1). Both viruses have common aspects in their pathogenesis: (1) they infect epithelial cells at the portal of entry and (2) they establish a latent infection in the sensory nerve ganglia, i.e., the trigeminal ganglia. However, they have different neuroinvasion and neurovirulence capacities. Only in rare cases can BoHV-1 reach the brain of infected cattle. BoHV-5 infection induces different degrees of severity of neurological disease depending on both viral and host factors. Although a case of BoHV-5 associated disease in Europe and some outbreaks in USA and Australia have been reported, the current geographical distribution of BoHV-5 infection is mainly restricted to South America, especially Brazil and Argentina. This review focuses on the genomic characteristics, pathobiology and epidemiology of BoHV-5, in order to provide information on the possible basis of alphaherpesvirus neuropathogenesis.


Assuntos
Doenças dos Bovinos/virologia , Encefalite Viral/veterinária , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 5 , Meningoencefalite/veterinária , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/patologia , Encefalite Viral/epidemiologia , Encefalite Viral/patologia , Encefalite Viral/virologia , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/patogenicidade , Herpesvirus Bovino 5/genética , Herpesvirus Bovino 5/patogenicidade , Meningoencefalite/epidemiologia , Meningoencefalite/patologia , Meningoencefalite/virologia , Fatores de Risco , Vacinas Virais
15.
J Virol Methods ; 161(1): 75-83, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19501619

RESUMO

Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) are closely related alphaherpesviruses infecting cattle. In countries where both viruses circulate, co-infection of cattle is likely. It was shown that recombination occurs at a high frequency in cattle infected dually with two BoHV-1 mutants. In addition, interspecific recombinants are generated in cell culture co-infected with BoHV-1 and BoHV-5. Even if the process of interspecific recombination appears inefficient relative to intraspecific recombination, BoHV-1 and BoHV-5 may give rise to interspecific recombinants in co-infected cattle. Since molecular tools for differentiating BoHV-1 from BoHV-5 are limited and do not allow to localize recombination events between these closely related virus species, 13 PCR sequencing assays were developed to discriminate between BoHV-1 and BoHV-5 at regular intervals throughout the entire respective viral DNA genomes. These assays were used to determine the genetic background of two interspecific BoHV-1/-5 recombinants generated previously. The two crossover points where recombination events occurred between the parental strains were determined. This study provides a detailed analysis of two interspecific recombinant viruses generated in vitro from closely related alphaherpesviruses infecting the same natural host. It demonstrates that recombination can occur within very short fragments of sequence homology. This finding raises questions about the mechanisms involved in the strands exchange and resolution step of the homologous recombination used by herpesviruses. This method will allow monitoring generation of recombinants between closely related herpesvirus species both in vitro and in vivo.


Assuntos
DNA Viral/genética , Herpesvirus Bovino 1/crescimento & desenvolvimento , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 5/crescimento & desenvolvimento , Herpesvirus Bovino 5/genética , Reação em Cadeia da Polimerase/métodos , Recombinação Genética , Animais , Sequência de Bases , Bovinos , Linhagem Celular , Herpesvirus Bovino 1/classificação , Herpesvirus Bovino 5/classificação , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA