Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(22): 26939-26945, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232584

RESUMO

The emergence of metal organic frameworks (MOFs) as advanced photonic materials has placed them at the forefront of exploration. Nonlinear optical (NLO) phenomena such as simultaneous two-photon absorption and consequent upconversion emission have been in demand for promising applications. A rational design approach based on the fundamental structure-property relationship is key for the fabrication of nonlinear optically active MOF materials. Here, we investigate two-photon-absorption (2PA)-induced photoluminescence of four new Cd(II) MOFs based on an acceptor-π-donor-π-acceptor trans, trans-9, 10-bis(4-pyridylethenyl)anthracene chromophore linker. The use of auxiliary carboxylate linkers resulted in the variation of crystal structures, leading to the modulation of NLO properties. On comparison with a standard Zn(II)-MOF, two MOFs showed enhancement in 2PA, while the other two showed a mild decrease. We tried to establish a structural correlation to explain the trend in NLO activity. The interplay of various factors such as chromophore density, degree of interpenetration, chromophore orientation, and π···π interactions between the individual networks affects the NLO activities. These results show the modulation of the optical properties of MOFs based on a combined strategy for the development of tunable single crystal NLO devices.

2.
Adv Mater ; 35(13): e2209094, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36623260

RESUMO

Room-temperature interaction between light-matter hybrid particles such as exciton-polaritons under extremely low-pump plays a crucial role in future coherent quantum light sources. However, the practical and scalable realization of coherent quantum light sources operating under low-pump remains a challenge because of the insufficient polariton interaction strength. Here, at room temperature, a very large polariton interaction strength is demonstrated, g ≈ 128 ± 21 µeV µm2 realized in a 2D nanolayered metal-organic framework (MOF). As a result, a polariton lasing at an extremely low pump fluence of P1  ≈ 0.01 ± 0.0015 µJ cm-2 (first threshold) is observed. Interestingly, as pump fluence increases to P2  ≈ 0.031 ± 0.003 µJ cm-2 (second threshold), a spontaneous transition to a polariton breakdown region occurs, which has not been reported before. Finally, an ordinary photon lasing occurs at P3  ≈ 0.11 ± 0.077 µJ cm-2 (third threshold), or above. These experiments and the theoretical model reveal new insights into the transition mechanisms characterized by three distinct optical regions. This work introduces MOF as a new type of quantum material, with naturally formed polariton cavities, that is a cost-effective and scalable solution to build microscale coherent quantum light sources and polaritonic devices.

3.
ACS Appl Mater Interfaces ; 13(50): 60163-60172, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874696

RESUMO

A change in the degree of interpenetration (DOI) in metal-organic frameworks (MOFs) prompted by heat, pressure, or exchange of solvents is a fascinating phenomenon that can potentially impact the functional properties of MOFs. Structural transformation involving two noncentrosymmetric MOFs with different DOIs provides a rare opportunity to manipulate their optical properties. Herein, we report an unusual single-crystal-to-single-crystal (SCSC) transformation of a noncentrosymmetric 7-fold interpenetrated diamondoid (dia) Cd(II) MOF into another noncentrosymmetric but 8-fold interpenetrated dia MOF upon the removal of guest solvents. A hydrogen-bond network formed between the lattice solvents and linker trans-2-(4-pyridyl)-4-vinylbenzoate (pvb) in a 7-fold interpenetrated noncentrosymmetric MOF results in a significant increase in the two-photon absorption cross-section (11 times) as compared to that in the desolvated 8-fold interpenetrated MOF. Also, an increase in the DOI in the noncentrosymmetric crystals strengthened the π···π interaction between the individual diamondoid networks and enhanced the second-order nonlinear optical (NLO) coefficient (deff) by 4.5 times. These results provide a way to manipulate the optical properties of MOFs using a combined strategy of the formation of hydrogen bonds and interpenetration for access to tunable single-crystal NLO devices in an SCSC manner. By changing the experimental conditions, another dia Cd(II) MOF with 4-fold interpenetration can be isolated. In this centrosymmetric MOF, the olefin groups in the backbone of the ligand (pvb) undergo a [2 + 2] cycloaddition reaction quantitatively under UV light but in a non-SCSC fashion.

4.
ACS Appl Mater Interfaces ; 13(27): 31891-31897, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34189906

RESUMO

Metal complexes have been gaining attention in recent times over the traditional inorganic materials such as nonlinear optical materials. Here, we report both two-photon absorption (2PA) and second harmonic generation (SHG) from single crystals of two Ag(I) complexes with considerable optical anisotropy. We demonstrate that by controlling the incident light polarization, the tunability between these two nonlinear optical processes can be achieved. The deff values of the observed SHG from one complex are determined to be one order of magnitude greater than ß-BBO crystals.

5.
ACS Appl Mater Interfaces ; 11(7): 7288-7295, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30697998

RESUMO

We report the observation of multimode exciton-polaritons in single-crystalline microplates of a two-dimensional (2D) layered metal-organic framework (MOF), which can be synthesized through a facile solvothermal approach, thereby eliminating all fabrication complexities usually involved in the construction of polariton cavities. With a combination of experiments and theoretical modeling, we have found that the exciton-polaritons are formed at room temperature as a result of a strong coupling between Fabry-Perot cavity modes formed inherently by two parallel surfaces of a microplate and Frenkel excitons provided by the 2D layers of dye molecular linkers in the MOF. Flexibility in rational selection of dye linkers for synthesizing such MOFs renders a large-scale, low-cost production of solid-state, micro-exciton-polaritonic devices operating in the visible and near-infrared range. Our work introduces MOFs as a new class of potential materials to explore polariton-related quantum phenomena in a cost-effective manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA