Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067367

RESUMO

To assess AR's role in TNBC treatment, various existing and completed clinical trials targeting AR or co-targeting AR with other pertinent signaling molecules were analyzed. Cyclin-dependent kinase 4/6 (CDK4/6), cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17 lyase), and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway were some of the most prevalent biomarkers used in combination therapy with AR inhibitors in these trials. Studying how AR functions in tandem with these molecules can have increasing breakthroughs in the treatment options for TNBC. Previous studies have been largely unsuccessful in utilizing AR as the sole drug target for systemic targeted treatment in TNBC. However, there is a lack of other commonly used drug target biomarkers in the treatment of this disease, as well. Thus, analyzing the clinical benefit rate (CBR) within clinical trials that use combination therapy can prove to be imperative to the progression of improving treatment options and prognoses.

2.
Mol Oncol ; 17(11): 2356-2379, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36635880

RESUMO

Dysregulation of the adaptor protein Abelson interactor 1 (ABI1) is linked to malignant transformation. To interrogate the role of ABI1 in cancer development, we mapped the ABI1 interactome using proximity-dependent labeling (PDL) with biotin followed by mass spectrometry. Using a novel PDL data filtering strategy, considering both peptide spectral matches and peak areas of detected peptides, we identified 212 ABI1 proximal interactors. These included WAVE2 complex components such as CYFIP1, NCKAP1, or WASF1, confirming the known role of ABI1 in the regulation of actin-polymerization-dependent processes. We also identified proteins associated with the TAK1-IKK pathway, including TAK1, TAB2, and RIPK1, denoting a newly identified function of ABI1 in TAK1-NF-κB inflammatory signaling. Functional assays using TNFα-stimulated, ABI1-overexpressing or ABI1-deficient cells showed effects on the TAK1-NF-kB pathway-dependent signaling to RIPK1, with ABI1-knockout cells being less susceptible to TNFα-induced, RIPK1-mediated, TAK1-dependent apoptosis. In sum, our PDL-based strategy enabled mapping of the ABI1 proximal interactome, thus revealing a previously unknown role of this adaptor protein in TAK1/RIPK1-based regulation of cell death and survival.


Assuntos
Proteômica , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Apoptose/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
3.
Wiad Lek ; 76(12): 2543-2555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38290016

RESUMO

Marie Sklodowska-Curie Symposia on Cancer Research and Care (MSCS-CRC) promote collaborations between cancer researchers and care providers in the United States, Canada and Central and Eastern European Countries (CEEC), to accelerate the development of new cancer therapies, advance early detection and prevention, increase cancer awareness, and improve cancer care and the quality of life of patients and their families. The third edition of MSCS-CRC, held at Roswell Park Comprehensive Cancer Center, Buffalo, NY, in September 2023, brought together 137 participants from 20 academic institutions in the US, Poland, Ukraine, Lithuania, Croatia and Hungary, together with 16 biotech and pharma entities. The key areas of collaborative opportunity identified during the meeting are a) creating of a database of available collaborative projects in the areas of early-phase clinical trials, preclinical development, and identification of early biomarkers; b) promoting awareness of cancer risks and efforts at cancer prevention; c) laboratory and clinical training; and d) sharing experience in cost-effective delivery of cancer care and improving the quality of life of cancer patients and their families. Examples of ongoing international collaborations in the above areas were discussed. Participation of the representatives of the Warsaw-based Medical Research Agency, National Cancer Institute (NCI) of the United States, National Cancer Research Institutes of Poland and Lithuania, New York State Empire State Development, Ministry of Health of Ukraine and Translational Research Cancer Center Consortium of 13 cancer centers from the US and Canada, facilitated the discussion of available governmental and non-governmental funding initiatives in the above areas.


Assuntos
Pesquisa Biomédica , Neoplasias , Humanos , Estados Unidos , New York , Qualidade de Vida , Neoplasias/terapia , Polônia
4.
Cancers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358740

RESUMO

In 2022, prostate cancer (PCa) is estimated to be the most commonly diagnosed cancer in men in the United States-almost 270,000 American men are estimated to be diagnosed with PCa in 2022. This review compares and contrasts in vivo models of PCa with regards to the altered genes, signaling pathways, and stages of tumor progression associated with each model. The main type of model included in this review are genetically engineered mouse models, which include conditional and constitutive knockout model. 2D cell lines, 3D organoids and spheroids, xenografts and allografts, and patient derived models are also included. The major applications, advantages and disadvantages, and ease of use and cost are unique to each type of model, but they all make it easier to translate the tumor progression that is seen in the mouse prostate to the human prostate. Although both human and mouse prostates are androgen-dependent, the fact that the native, genetically unaltered prostate in mice cannot give rise to carcinoma is an especially critical component of PCa models. Thanks to the similarities between the mouse and human genome, our knowledge of PCa has been expanded, and will continue to do so, through models of PCa.

5.
Mol Oncol ; 16(14): 2632-2657, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34967509

RESUMO

Despite the current standard of care, breast cancer remains one of the leading causes of mortality in women worldwide, thus emphasizing the need for better predictive and therapeutic targets. ABI1 is associated with poor survival and an aggressive breast cancer phenotype, although its role in tumorigenesis, metastasis, and the disease outcome remains to be elucidated. Here, we define the ABI1-based seven-gene prognostic signature that predicts survival of metastatic breast cancer patients; ABI1 is an essential component of the signature. Genetic disruption of Abi1 in primary breast cancer tumors of PyMT mice led to significant reduction of the number and size of lung metastases in a gene dose-dependent manner. The disruption of Abi1 resulted in deregulation of the WAVE complex at the mRNA and protein levels in mouse tumors. In conclusion, ABI1 is a prognostic metastatic biomarker in breast cancer. We demonstrate, for the first time, that lung metastasis is associated with an Abi1 gene dose and specific gene expression aberrations in primary breast cancer tumors. These results indicate that targeting ABI1 may provide a therapeutic advantage in breast cancer patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Proteínas do Citoesqueleto , Neoplasias Pulmonares , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Metástase Neoplásica
6.
Cell Commun Signal ; 19(1): 67, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193161

RESUMO

Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transição Epitelial-Mesenquimal , Quinases da Família src/metabolismo , Animais , Humanos , Modelos Biológicos , Transdução de Sinais , Quinases da Família src/química
7.
Cancers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067832

RESUMO

Nearly one third of men will incur biochemical recurrence after treatment for localized prostate cancer. Androgen deprivation therapy (ADT) is the therapeutic mainstay; however, some patients will transition to a castrate resistant state (castrate resistant prostate cancer, CRPC). Subjects with CRPC may develop symptomatic metastatic disease (mCRPC) and incur mortality several years later. Prior to metastatic disease, however, men acquire non-metastatic CRPC (nmCRPC) which lends the unique opportunity for intervention to delay disease progression and symptoms. This review addresses current therapies for nmCRPC, as well as novel therapeutics and pathway strategies targeting men with nmCRPC.

9.
World J Urol ; 38(9): 2139-2145, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31175459

RESUMO

PURPOSE: To validate a novel method of urethral stricture treatment using liquid buccal mucosal grafts (LBMG) to augment direct vision internal urethrotomy (DVIU) in an animal model. MATERIALS AND METHODS: A rabbit stricture model was used to test this method. Strictures were induced in 26 rabbits using electroresection of urethral epithelium. The animals were randomized into two groups: Group-1, treated with DVIU and LBMG in fibrin glue, and Group-2, DVIU with fibrin glue only. LBMG was prepared by suspension of mechanically minced buccal mucosa micrografts in fibrin glue. This LBMG-fibrin glue mixture was later injected into the urethrotomies of Group-1 animals. All animals were killed at 24 weeks after repeat retrograde urethrogram (RUG) and urethroscopy by surgeon blinded to the treatment arm. Radiographic images and histological specimens were reviewed by a radiologist and a pathologist, respectively, blinded to the treatment arm. Stricture treatment was considered a success if a diameter measured on RUG increased by ≥ 50% compared to pre-treatment RUG diameter. Histological specimens were assessed for the presence of BMG engraftment. RESULTS: In Group-1, 8/12(67%) animals demonstrated engraftment of LBMG, compared to none in Group-2 (p = 0.0005). 7/12(58%) in Group-1 showed radiographic resolution/improvement of strictures compared to 5/13 Group-2 rabbits (38%, p = 0.145). The median percent change for the Group-1 was 59%, compared to 41.6% for Group-2 (p = 0.29). CONCLUSION: This proof-of-concept study demonstrates feasibility of LBMG for endoscopic urethral stricture repairs. Further studies are needed to establish the role of this novel concept in treatment of urethral strictures.


Assuntos
Mucosa Bucal/transplante , Uretra/cirurgia , Estreitamento Uretral/cirurgia , Animais , Modelos Animais de Doenças , Endoscopia , Masculino , Estudos Prospectivos , Coelhos , Distribuição Aleatória , Procedimentos Cirúrgicos Urológicos Masculinos/métodos
10.
Cancers (Basel) ; 11(12)2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771198

RESUMO

The nuclear receptor superfamily comprises a large group of proteins with functions essential for cell signaling, survival, and proliferation. There are multiple distinctions between nuclear superfamily classes defined by hallmark differences in function, ligand binding, tissue specificity, and DNA binding. In this review, we utilize the initial classification system, which defines subfamilies based on structure and functional difference. The defining feature of the nuclear receptor superfamily is that these proteins function as transcription factors. The loss of transcriptional regulation or gain of functioning of these receptors is a hallmark in numerous diseases. For example, in prostate cancer, the androgen receptor is a primary target for current prostate cancer therapies. Targeted cancer therapies for nuclear hormone receptors have been more feasible to develop than others due to the ligand availability and cell permeability of hormones. To better target these receptors, it is critical to understand their structural and functional regulation. Given that late-stage cancers often develop hormone insensitivity, we will explore the strengths and pitfalls of targeting other transcription factors outside of the nuclear receptor superfamily such as the signal transducer and activator of transcription (STAT).

11.
Cell Commun Signal ; 17(1): 120, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31530281

RESUMO

BACKGROUND: Prostate cancer development involves various mechanisms, which are poorly understood but pointing to epithelial mesenchymal transition (EMT) as the key mechanism in progression to metastatic disease. ABI1, a member of WAVE complex and actin cytoskeleton regulator and adaptor protein, acts as tumor suppressor in prostate cancer but the role of ABI1 in EMT is not clear. METHODS: To investigate the molecular mechanism by which loss of ABI1 contributes to tumor progression, we disrupted the ABI1 gene in the benign prostate epithelial RWPE-1 cell line and determined its phenotype. Levels of ABI1 expression in prostate organoid tumor cell lines was evaluated by Western blotting and RNA sequencing. ABI1 expression and its association with prostate tumor grade was evaluated in a TMA cohort of 505 patients and metastatic cell lines. RESULTS: Low ABI1 expression is associated with biochemical recurrence, metastasis and death (p = 0.038). Moreover, ABI1 expression was significantly decreased in Gleason pattern 5 vs. pattern 4 (p = 0.0025) and 3 (p = 0.0012), indicating an association between low ABI1 expression and highly invasive prostate tumors. Disruption of ABI1 gene in RWPE-1 cell line resulted in gain of an invasive phenotype, which was characterized by a loss of cell-cell adhesion markers and increased migratory ability of RWPE-1 spheroids. Through RNA sequencing and protein expression analysis, we discovered that ABI1 loss leads to activation of non-canonical WNT signaling and EMT pathways, which are rescued by re-expression of ABI1. Furthermore, an increase in STAT3 phosphorylation upon ABI1 inactivation and the evidence of a high-affinity interaction between the FYN SH2 domain and ABI1 pY421 support a model in which ABI1 acts as a gatekeeper of non-canonical WNT-EMT pathway activation downstream of the FZD2 receptor. CONCLUSIONS: ABI1 controls prostate tumor progression and epithelial plasticity through regulation of EMT-WNT pathway. Here we discovered that ABI1 inhibits EMT through suppressing FYN-STAT3 activation downstream from non-canonical WNT signaling thus providing a novel mechanism of prostate tumor suppression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Transição Epitelial-Mesenquimal/genética , Técnicas de Inativação de Genes , Neoplasias da Próstata/patologia , Via de Sinalização Wnt/genética , Caderinas/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Receptores Frizzled/metabolismo , Humanos , Masculino , Gradação de Tumores , Fenótipo , Recidiva , Fator de Transcrição STAT3/metabolismo , Regulação para Cima/genética , beta Catenina/metabolismo
12.
Sci Rep ; 9(1): 7826, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127190

RESUMO

Tunneling nanotubes (TNTs) are actin-based membranous structures bridging distant cells for intercellular communication. We define roles for TNTs in stress adaptation and treatment resistance in prostate cancer (PCa). Androgen receptor (AR) blockade and metabolic stress induce TNTs, but not in normal prostatic epithelial or osteoblast cells. Co-culture assays reveal enhanced TNT formation between stressed and unstressed PCa cells as well as from stressed PCa to osteoblasts. Stress-induced chaperones clusterin and YB-1 localize within TNTs, are transported bi-directionally via TNTs and facilitate TNT formation in PI3K/AKT and Eps8-dependent manner. AR variants, induced by AR antagonism to mediate resistance to AR pathway inhibition, also enhance TNT production and rescue loss of clusterin- or YB-1-repressed TNT formation. TNT disruption sensitizes PCa to treatment-induced cell death. These data define a mechanistic network involving stress induction of chaperone and AR variants, PI3K/AKT signaling, actin remodeling and TNT-mediated intercellular communication that confer stress adaptative cell survival.


Assuntos
Citoesqueleto de Actina/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Comunicação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/metabolismo , Antagonistas de Receptores de Andrógenos/uso terapêutico , Transporte Biológico/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Clusterina/metabolismo , Técnicas de Cocultura , Células Epiteliais , Humanos , Microscopia Intravital , Masculino , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos , Wortmanina/farmacologia , Proteína 1 de Ligação a Y-Box/metabolismo
13.
J Vis Exp ; (139)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30295668

RESUMO

Genetically engineered mouse models (GEMMs) serve as effective pre-clinical models for investigating most types of human cancers, including prostate cancer (PCa). Understanding the anatomy and histology of the mouse prostate is important for the efficient use and proper characterization of such animal models. The mouse prostate has four distinct pairs of lobes, each with their own characteristics. This article demonstrates the proper method of dissection and identification of mouse prostate lobes for disease analysis. Post-dissection, the prostate cells can be further cultured in vitro for mechanistic understanding. Since mouse prostate primary cells tend to lose their normal characteristics when cultured in vitro, we outline here a method for isolating the cells and growing them as 3D spheroid cultures, which is effective for preserving the physiological characteristics of the cells. These 3D cultures can be used for analyzing cell morphology and behavior in near-physiological conditions, investigating altered levels and localizations of key proteins and pathways involved in the development and progression of a disease, and looking at responses to drug treatments.


Assuntos
Dissecação/métodos , Imageamento Tridimensional/métodos , Neoplasias da Próstata/diagnóstico por imagem , Esferoides Celulares/patologia , Animais , Células Cultivadas , Progressão da Doença , Humanos , Masculino , Camundongos , Modelos Animais , Neoplasias da Próstata/patologia
14.
J Cell Sci ; 131(22)2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30333140

RESUMO

In fibroblasts, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) stimulate the formation of actin-rich, circular dorsal ruffles (CDRs) and phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of Akt. To test the hypothesis that CDRs increase synthesis of phosphorylated Akt1 (pAkt), we analyzed the contributions of CDRs to Akt phosphorylation in response to PDGF and EGF. CDRs appeared within several minutes of growth factor addition, coincident with a peak of pAkt. Microtubule depolymerization with nocodazole blocked CDR formation and inhibited phosphorylation of Akt in response to EGF but not PDGF. Quantitative immunofluorescence showed increased concentrations of Akt, pAkt and phosphatidylinositol (3,4,5)-trisphosphate (PIP3), the phosphoinositide product of PI3K that activates Akt, concentrated in CDRs and ruffles. EGF stimulated lower maximal levels of pAkt than did PDGF, which suggests that Akt phosphorylation requires amplification in CDRs only when PI3K activities are low. Accordingly, stimulation with low concentrations of PDGF elicited lower levels of Akt phosphorylation, which, like responses to EGF, were inhibited by nocodazole. These results indicate that when receptor signaling generates low levels of PI3K activity, CDRs facilitate local amplification of PI3K and phosphorylation of Akt.This article has an associated First Person interview with the first author of the paper.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Nocodazol/farmacologia , Fosforilação , Proteínas Recombinantes/farmacologia , Transfecção
15.
Blood ; 132(19): 2053-2066, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30213875

RESUMO

Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34+ hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Medula Óssea/patologia , Proteínas do Citoesqueleto/genética , Deleção de Genes , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Animais , Medula Óssea/metabolismo , Autorrenovação Celular , Células Cultivadas , Regulação para Baixo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Mielofibrose Primária/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
16.
Mol Biol Cell ; 29(5): 532-541, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282278

RESUMO

We propose to understand how the mitotic kinase PLK1 drives chromosome segregation errors, with a specific focus on Gravin, a PLK1 scaffold. In both three-dimensional primary prostate cancer cell cultures that are prone to Gravin depletion and Gravin short hairpin RNA (shRNA)-treated cells, an increase in cells containing micronuclei was noted in comparison with controls. To examine whether the loss of Gravin affected PLK1 distribution and activity, we utilized photokinetics and a PLK1 activity biosensor. Gravin depletion resulted in an increased PLK1 mobile fraction, causing the redistribution of active PLK1, which leads to increased defocusing and phosphorylation of the mitotic centrosome protein CEP215 at serine-613. Gravin depletion further led to defects in microtubule renucleation from mitotic centrosomes, decreased kinetochore-fiber integrity, increased incidence of chromosome misalignment, and subsequent formation of micronuclei following mitosis completion. Murine Gravin rescued chromosome misalignment and micronuclei formation, but a mutant Gravin that cannot bind PLK1 did not. These findings suggest that disruption of a Gravin-PLK1 interface leads to inappropriate PLK1 activity contributing to chromosome segregation errors, formation of micronuclei, and subsequent DNA damage.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Dano ao DNA , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
17.
J Urol ; 196(6): 1788-1795, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27177425

RESUMO

PURPOSE: We describe a novel method of urethral stricture treatment using liquid buccal mucosal grafts to augment direct vision internal urethrotomy. MATERIALS AND METHODS: A rabbit stricture model was used to test this method. In phase 1 the concept of endoscopic liquid buccal mucosal graft implantation was tested by performing direct vision internal urethrotomy in 3 rabbits with immediate intraurethral injection of autologous liquid buccal mucosal grafts suspended in fibrin glue. Animals were sacrificed at 2 to 3 weeks and the urethras were examined for the presence of buccal mucosa engraftment. In phase 2 strictures were induced by electroresection in 9 rabbits divided into 2 groups, including 1) 6 rabbits treated with direct vision internal urethrotomy and liquid buccal mucosal grafts, and 2) 3 controls that underwent direct vision internal urethrotomy and injection of fibrin glue only. Two treated and 1 control animals were sacrificed at 8, 16 and 24 weeks each. Prior to sacrifice the animals underwent retrograde urethrograms and urethroscopy. Histological specimens were examined for the presence of buccal mucosal engraftment. RESULTS: In phase 1, 2 of the 3 rabbits demonstrated engraftment of buccal mucosa in the urethra after injection of liquid buccal mucosal grafts. In phase 2 all 6 treated animals demonstrated engraftment with resolution/improvement of strictures on retrograde urethrograms and urethroscopy. Controls had no buccal engraftment and showed fibrosis and chronic inflammation. One of the 3 controls had persistent stricture on retrograde urethrograms and cystoscopy. CONCLUSIONS: This proof of concept study demonstrated the feasibility of using liquid buccal mucosal grafts for endoscopic urethral stricture repair. Such a method may allow for wide application of this novel concept of using liquid buccal mucosal grafts to augment direct vision internal urethrotomy.


Assuntos
Cistoscopia/métodos , Mucosa Bucal/transplante , Estreitamento Uretral/cirurgia , Procedimentos Cirúrgicos Urológicos Masculinos/métodos , Animais , Modelos Animais de Doenças , Masculino , Coelhos , Transplante Autólogo , Uretra/cirurgia
18.
Prostate ; 76(13): 1135-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27225637

RESUMO

BACKGROUND: Patients with germline BRCA2 gene mutations (BRCA2mut) have more aggressive prostate cancer. Analysis of all reported germline BRCA2mut prostate cancer cases allows better understanding of the clinicopathologic features and survival outcomes of these men. METHODS: A systematic review was performed with the MEDLINE database to capture articles evaluating clinicopathologic characteristics of men with BRCA2mut associated prostate cancer. Inclusion criteria were at least five subjects, confirmation of BRCA2mut status, and data for at least 2 clinical parameters of disease. Meta-analysis was performed on outcomes data. Chi-squared tests were used to compare disease features among men undergoing formal versus ad hoc screening, as well as an age of diagnosis less than versus greater than 65 years. Rates of metastatic disease among BRCA2mut cases were compared to rates among non-carrier control subjects and the general population using the SEER database. RESULTS: Twelve out of 289 studies met our inclusion criteria, representing 261 BRCA2mut men. Among carriers, the median age at diagnosis was 62 years and median PSA was 15 ng/dl with 95% of men having a PSA>3. Over 40% of BRCA2mut patients had T3/T4 disease and over 25% were metastatic at presentation. Survival was worse in BRCA2mut men with prostate cancer when compared to non-BRCA2mut subjects. BRCA2mut carriers had significantly higher rates of metastatic disease (18%) versus non-carrier controls (8%) and the SEER population (4%). CONCLUSIONS: BRCA2mut carriers are more likely to have poor risk of prostate cancer at presentation and exhibit worse oncologic outcomes relative to non-carriers, including a fourfold increase in metastatic disease. Younger men and those undergoing formal screening present with less advanced disease which supports a need for earlier identification and screening protocols. Additionally, this population may benefit from alternative therapeutic paradigms. Prostate 76:1135-1145, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteína BRCA2/genética , Mutação em Linhagem Germinativa/genética , Heterozigoto , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Animais , Humanos , Masculino , Antígeno Prostático Específico/genética , Neoplasias da Próstata/epidemiologia , Estudos Retrospectivos
19.
Oncotarget ; 6(35): 37792-807, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26473374

RESUMO

Crk is the prototypical member of a class of Src homology 2 (SH2) and Src homology 3 (SH3) domain-containing adaptor proteins that positively regulate cell motility via the activation of Rac1 and, in certain tumor types such as GBM, can promote cell invasion and metastasis by mechanisms that are not well understood. Here we demonstrate that Crk, via its phosphorylation at Tyr251, promotes invasive behavior of tumor cells, is a prominent feature in GBM, and correlating with aggressive glioma grade IV staging and overall poor survival outcomes. At the molecular level, Tyr251 phosphorylation of Crk is negatively regulated by Abi1, which competes for Crk binding to Abl and attenuates Abl transactivation. Together, these results show that Crk and Abi1 have reciprocal biological effects and act as a molecular rheostat to control Abl activation and cell invasion. Finally, these data suggest that Crk Tyr251 phosphorylation regulate invasive cell phenotypes and may serve as a biomarker for aggressive GBM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Apoptose , Sítios de Ligação , Western Blotting , Proliferação de Células , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/mortalidade , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Fenótipo , Fosforilação , Prognóstico , Transdução de Sinais , Taxa de Sobrevida , Análise Serial de Tecidos , Células Tumorais Cultivadas , Cicatrização
20.
Oncotarget ; 6(14): 12383-91, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25906751

RESUMO

Genetic alterations involving TMPRSS2-ERG alterations and deletion of key tumor suppressor genes are associated with development and progression of prostate cancer (PCa). However, less defined are early events that may contribute to the development of high-risk metastatic prostate cancer. Bioinformatic analysis of existing tumor genomic data from PCa patients revealed that WAVE complex gene alterations are associated with a greater likelihood of prostate cancer recurrence. Further analysis of primary vs. castration resistant prostate cancer indicate that disruption of WAVE complex gene expression, and particularly WAVE1 gene (WASF1) loss, is also associated with castration resistance, where WASF1 is frequently co-deleted with PTEN and resists androgen deprivation therapy (ADT). Hence, we propose that WASF1 status defines a subtype of ADT-resistant patients. Better understanding of the effects of WAVE pathway disruption will lead to development of better diagnostic and treatment modalities.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Próstata Resistentes à Castração/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Biologia Computacional , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Neoplasias de Próstata Resistentes à Castração/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA