Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38600804

RESUMO

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Assuntos
Biofarmácia , Indústria Farmacêutica , Humanos , Biofarmácia/métodos , Indústria Farmacêutica/métodos , Modelos Biológicos , Equivalência Terapêutica , Preparações Farmacêuticas/química , Estados Unidos
3.
Pharmaceutics ; 14(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35631595

RESUMO

A webinar series that was organised by the Academy of Pharmaceutical Sciences Biopharmaceutics focus group in 2021 focused on the challenges of developing clinically relevant dissolution specifications (CRDSs) for oral drug products. Industrial scientists, together with regulatory and academic scientists, came together through a series of six webinars, to discuss progress in the field, emerging trends, and areas for continued collaboration and harmonisation. Each webinar also hosted a Q&A session where participants could discuss the shared topic and information. Although it was clear from the presentations and Q&A sessions that we continue to make progress in the field of CRDSs and the utility/success of PBBM, there is also a need to continue the momentum and dialogue between the industry and regulators. Five key areas were identified which require further discussion and harmonisation.

4.
AAPS J ; 24(3): 50, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35352186

RESUMO

This report summarizes podium presentations and breakout sessions from the second day of the 2019 M-CERSI workshop on In Vitro Dissolution Similarity Assessment in Support of Drug Product Quality: What, How, and When? Presenters from the U.S. Food and Drug Administration (FDA), Health Canada (HC), European Medicines Agency (EMA), Brazilian Health Surveillance Agency (ANVISA), and the pharmaceutical industry shared experiences/concerns with dissolution profile similarity assessment supporting minor/moderate Chemistry, Manufacturing and Control (CMC) changes. Members from regulatory agencies explained that dissolution profile similarity testing is only part of the overall assessment of the acceptability of the proposed changes; decisions are usually made based on aggregate weight of evidence. Scientific shortcomings of f2 were highlighted but no proposal on how to replace it was made. Controlling dissolution timepoint variability and application of pairwise batch-to-batch comparisons (PBC) of dissolution profiles caused considerable debate. Several industry participants suggested increased sample sizes to raise confidence in decision-making and to avoid PBC. They proposed identification of a single mathematical method with predefined acceptance criteria and suggested that dissolution timepoint selection should follow EMA and HC guidance. A majority of meeting attendees favored applying clinically relevant dissolution specifications (CRDS) and dissolution safe space to determine the impact of minor/moderate CMC changes as opposed to dissolution profile similarity assessment via statistical methods. Day 2 of the workshop highlighted the need and opportunities for global harmonization including variability, timepoint selection, role of CRDS, and statistical methods to address the ambiguity globally operating pharmaceutical companies are currently facing.


Assuntos
Indústria Farmacêutica , Motivação , Humanos , Preparações Farmacêuticas , Solubilidade , Estados Unidos , United States Food and Drug Administration
5.
J Pharm Sci ; 110(2): 594-609, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152375

RESUMO

This report summarizes the proceedings for Day 3 of the workshop titled "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, patient-centric product development necessitates the development of clinically relevant drug product specifications (CRDPS). In this regard, Physiologically Based Biopharmaceutics modeling (PBBM) is a viable tool to establish links between in-vitro to in-vivo data, and support with establishing CRDPS. The theme of day 3 was practical applications of PBBM to support drug product quality. In this manuscript, case studies from US FDA, EMA and pharmaceutical industry on applications of PBBM in drug product quality are summarized which include 1) regulatory agency's perspectives on establishing the safe space and achieving study waivers, 2) model-informed risk assessment on the effects of acid reducing agents, bridging of dissolution methods, food effect, and formulation selection, and 3) understanding clinical formulation performance. Breakout session discussions focused on four topics - 1) terminologies related to physiologically based modeling in support of drug product quality, 2) regulatory harmonization on evidentiary standards, 3) CRDPS approaches and 4) bridging between biorelevant and quality control (QC) dissolution methods.


Assuntos
Biofarmácia , Preparações Farmacêuticas , Humanos , Modelos Biológicos , Relatório de Pesquisa , Solubilidade
6.
Eur J Pharm Biopharm ; 155: 55-68, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32781025

RESUMO

In vitro dissolution experiments are used to qualitatively assess the impact of formulation composition and process changes on the drug dosage form performance. However, the use of dissolution data to quantitatively predict changes in the absorption profile remains limited. Physiologically-based Pharmacokinetic(s) (PBPK) models facilitate incorporation of in vitro dissolution experiments into mechanistic oral absorption models to predict in vivo oral formulation performance, and verify if the drug product dissolution method is biopredictive or clinically relevant. Nevertheless, a standardized approach for using dissolution data within PBPK models does not yet exist and the introduction of dissolution data in PBPK relies on a case by case approach which accommodates from differences in release mechanism and limitations to drug absorption. As part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project a cross-work package was set up to gather a realistic understanding of various approaches used and their areas of applications. This paper presents the approaches shared by academic and industrial scientists through the OrBiTo project to integrate dissolution data within PBPK software to improve the prediction accuracy of oral formulations in vivo. Some general recommendations regarding current use and future improvements are also provided.


Assuntos
Simulação por Computador , Desenvolvimento de Medicamentos/métodos , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Administração Oral , Animais , Biofarmácia/métodos , Biofarmácia/tendências , Simulação por Computador/tendências , Desenvolvimento de Medicamentos/tendências , Liberação Controlada de Fármacos/efeitos dos fármacos , Liberação Controlada de Fármacos/fisiologia , Previsões , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/síntese química , Solubilidade
7.
Pharmaceutics ; 12(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878006

RESUMO

A meeting that was organized by the Academy of Pharmaceutical Sciences Biopharmaceutics and Regulatory Sciences focus groups focused on the challenges of Developing Clinically Relevant Dissolution Specifications (CRDS) for Oral Drug Products. Industrial Scientists that were involved in product development shared their experiences with in vitro dissolution and in silico modeling approaches to establish clinically relevant dissolution specifications. The regulators shared their perspectives on the acceptability of these different strategies for the development of acceptable specifications. The meeting also reviewed several collaborative initiatives that were relevant to regulatory biopharmaceutics. Following the scientific presentations, a roundtable session provided an opportunity for delegates to discuss the information that was shared during the presentations, debate key questions, and propose strategies to make progress in this critical area of regulatory biopharmaceutics. It was evident from the presentations and subsequent discussions that progress continues to be made with approaches to establish robust CRDS. Further dialogue between industry and regulatory agencies greatly assisted future developments and key areas for focused discussions on CRDS were identified.

8.
AAPS J ; 20(6): 93, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30151612

RESUMO

This publication summarizes the proceedings of day 3 of a 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." Specifically, this publication discusses the current approaches in building clinical relevance into drug product development for solid oral dosage forms, along with challenges that both industry and regulatory agencies are facing in setting clinically relevant drug product specifications (CRDPS) as presented at the workshop. The concept of clinical relevance is a multidisciplinary effort which implies an understanding of the relationship between the critical quality attributes (CQAs) and their impact on predetermined clinical outcomes. Developing this level of understanding, in many cases, requires introducing deliberate but meaningful variations into the critical material attributes (CMAs) and critical process parameters (CPPs) to establish a relationship between the resulting in vitro dissolution/release profiles and in vivo PK performance, a surrogate for clinical outcomes. Alternatively, with the intention of improving the efficiency of the drug product development process by limiting the burden of conducting in vivo studies, this understanding can be either built, or at least enhanced, through in silico efforts, such as IVIVC and physiologically based pharmacokinetic (PBPK) absorption modeling and simulation (M&S). These approaches enable dissolution testing to establish safe boundaries and reject drug product batches falling outside of the established safe range (e.g., due to inadequate in vivo performance) enabling the method to become clinically relevant. Ultimately, these efforts contribute towards patient-centric drug product development and allow regulatory flexibility throughout the lifecycle of the drug product.


Assuntos
Química Farmacêutica/métodos , Congressos como Assunto , Desenvolvimento de Medicamentos , Liberação Controlada de Fármacos , Pesquisa Farmacêutica/métodos , Simulação por Computador , Modelos Biológicos , Solubilidade
9.
Stat Med ; 37(20): 2968-2981, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-29862526

RESUMO

In drug development, comparability of dissolution profiles of 2 different formulations is usually assessed using the similarity factor f2 . In practice, the drug dissolution profiles are deemed similar if the f2 exceeds 50, which occurs when a 10% maximum difference in the mean percentage of the dissolved drug at each time point between test and reference formulation is obtained. According to the Guideline on the Investigation of Bioequivalence (CPMP/EWP/QWP/1401/98 Rev. 1/ Corr **) use of the f2 is however restricted by a set of validity conditions. If some of these conditions are not satisfied, the f2 is not considered suitable, and alternative statistical methods are needed. In this article, we propose an inferential framework based on the maximum deviation between curves to test the comparability of drug dissolution profiles. The new methodology is applicable regardless whether the validity criteria of the f2 are met or not. Contrary to the f2 , this approach also integrates the variability of the measurements over time and not only their average. To benchmark our method, we performed simulations informed by 3 real case studies provided by the European Medicines Agency and extracted from dossiers submitted to the Centralised Procedure for Marketing Authorisation Application. In the scenarios of the simulation study, the new method controlled its type I error rate when the maximum deviation was greater than the similarity acceptance limit of 10%. The power exceeded 80% for small values of the maximum deviation, while the test was more conservative for intermediate ones. Our results were also very robust to sampling variations. Based on these positive findings, we encourage applicants to consider the new maximum deviation-based method as a valid alternative to the f2 , especially when the validity criteria of the latter are not met.


Assuntos
Desenvolvimento de Medicamentos , Liberação Controlada de Fármacos , Modelos Estatísticos , Algoritmos , Benchmarking , Química Farmacêutica/estatística & dados numéricos , Simulação por Computador , Humanos , Solubilidade , Equivalência Terapêutica
10.
J Pharm Biomed Anal ; 43(4): 1370-5, 2007 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-17188445

RESUMO

Pergolide (PG) a semi-synthetic ergot alkaloid derivative used mainly for the treatment of Parkinson's disease is known to be a photosensitive drug substance. The major photodegradation products are PG sulphoxide (SX) and PG sulphone (SN), which are also the main impurities of the bulk drug substance. It is widely metabolized to more than 10 metabolites including SX and SN. In this work an improved photostability indicating ion-pair chromatography method for PG mesilate was developed. The method can be applied in the determination of PG and impurities in aqueous solutions and in tablets for routine analysis. This new method is appropriate for the quantitative determination of PG in the presence of its impurities and photodegradation products and can also be used for PG complexes with cyclodextrins (commonly used as photostabilizing agents). Furthermore it is suitable for the quantitation of its impurities and its thermal or photo-induced decomposition products. Separation was achieved on a ThermoQuest C(18) BDS column and Sodium octanosulphonate was used as ion-pairing agent. Analysis was performed at 223 nm. Validation parameters included: specificity, linearity, precision and accuracy, limit of quantitation and suitability. The method was found to be specific and linear for PG, as well as for SX and, SN impurities. The recovery was 100.83+/-0.46% for PG, 99.86+/-0.33% for SX and 99.77+/-1.84% for SN. Finally the photodegradation profile of PG mesilate was studied in different initial sample concentration. The obtained result revealed that: PG photolysis is catalyzed by its degradation products and that decrease of initial sample concentration reduces the rate of PG photoinduced degradation.


Assuntos
Cromatografia/métodos , Ciclodextrinas/farmacologia , Pergolida/análise , Pergolida/efeitos da radiação , Contaminação de Medicamentos , Estabilidade de Medicamentos , Luz , Estrutura Molecular , Pergolida/química , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta , Comprimidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA