Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Parkinsonism Relat Disord ; 124: 107016, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38838453

RESUMO

BACKGROUND: We recently identified three distinct Parkinson's disease subtypes: "motor only" (predominant motor deficits with intact cognition and psychiatric function); "psychiatric & motor" (prominent psychiatric symptoms and moderate motor deficits); "cognitive & motor" (cognitive and motor deficits). OBJECTIVE: We used an independent cohort to replicate and assess reliability of these Parkinson's disease subtypes. METHODS: We tested our original subtype classification with an independent cohort (N = 100) of Parkinson's disease participants without dementia and the same comprehensive evaluations assessing motor, cognitive, and psychiatric function. Next, we combined the original (N = 162) and replication (N = 100) datasets to test the classification model with the full combined dataset (N = 262). We also generated 10 random split-half samples of the combined dataset to establish the reliability of the subtype classifications. Latent class analyses were applied to the replication, combined, and split-half samples to determine subtype classification. RESULTS: First, LCA supported the three-class solution - Motor Only, Psychiatric & Motor, and Cognitive & Motor- in the replication sample. Next, using the larger, combined sample, LCA again supported the three subtype groups, with the emergence of a potential fourth group defined by more severe motor deficits. Finally, split-half analyses showed that the three-class model also had the best fit in 13/20 (65%) split-half samples; two-class and four-class solutions provided the best model fit in five (25%) and two (10%) split-half replications, respectively. CONCLUSIONS: These results support the reproducibility and reliability of the Parkinson's disease behavioral subtypes of motor only, psychiatric & motor, and cognitive & motor groups.

2.
Inflammation ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563877

RESUMO

Lysosomal membrane permeabilization caused either via phagocytosis of particulates or the uptake of protein aggregates can trigger the activation of NLRP3 inflammasome- an intense inflammatory response that drives the release of the pro-inflammatory cytokine IL-1ß by regulating the activity of CASPASE 1. The maintenance of lysosomal homeostasis and lysosomal membrane integrity is facilitated by the AAA+ ATPase, VCP/p97 (VCP). However, the relationship between VCP and NLRP3 inflammasome activity remains unexplored. Here, we demonstrate that the VCP inhibitors, DBeQ and ML240 elicit the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) when used as activation stimuli. Moreover, genetic inhibition of VCP or VCP chemical inhibition enhances lysosomal membrane damage and augments LLoME-associated NLRP3 inflammasome activation in BMDMs. Similarly, VCP inactivation also augments NLRP3 inflammasome activation mediated by aggregated alpha-synuclein fibrils and lysosomal damage. These data suggest that VCP is a participant in the complex regulation of NLRP3 inflammasome activation.

3.
Nat Commun ; 15(1): 2750, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553463

RESUMO

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Microscopia Crioeletrônica , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia
4.
Biomol NMR Assign ; 17(2): 281-286, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37919529

RESUMO

Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doença por Corpos de Lewy/patologia , Ressonância Magnética Nuclear Biomolecular , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia
5.
J Med Chem ; 66(17): 12185-12202, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37651366

RESUMO

Abnormal α-synuclein (α-syn) aggregation characterizes α-synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy (MSA). However, no suitable positron emission tomography (PET) radiotracer for imaging α-syn in PD and MSA exists currently. Our structure-activity relationship studies identified 4-methoxy-N-(4-(3-(pyridin-2-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)phenyl)benzamide (4i) as a PET radiotracer candidate for imaging α-syn. In vitro assays revealed high binding of 4i to recombinant α-syn fibrils (inhibition constant (Ki) = 6.1 nM) and low affinity for amyloid beta (Aß) fibrils in Alzheimer's disease (AD) homogenates. However, [3H]4i also exhibited high specific binding to AD, progressive supranuclear palsy, and corticobasal degeneration tissues as well as PD and MSA tissues, suggesting notable affinity to tau. Nevertheless, the specific binding to pathologic α-syn aggregates in MSA post-mortem brain tissues was significantly higher than in PD tissues. This finding demonstrated the potential use of [11C]4i as a PET tracer for imaging α-syn in MSA patients. Nonhuman primate PET studies confirmed good brain uptake and rapid washout for [11C]4i.


Assuntos
Doença de Alzheimer , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Animais , alfa-Sinucleína , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem
6.
Res Sq ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865115

RESUMO

Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.

7.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711931

RESUMO

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. We developed and validated a novel method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and used solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise two protofilaments with pseudo-21 helical screw symmetry, very low twist and an interface formed by antiparallel beta strands of residues 85-93. The fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural landscape of LBD Asyn fibrils and inform further studies of disease mechanisms, imaging agents and therapeutics targeting Asyn.

8.
Ann Neurol ; 93(1): 184-195, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331161

RESUMO

OBJECTIVE: The objective of this study was to evaluate the relationship between Parkinson's disease (PD) with dementia and cortical proteinopathies in a large population of pathologically confirmed patients with PD. METHODS: We reviewed clinical data from all patients with autopsy data seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2019. All patients with a diagnosis of PD based on neuropathology were included. We used logistic regression and multivariate analysis of covariance (MANCOVA) to investigate the relationship between neuropathology and dementia. RESULTS: A total of 165 patients with PD met inclusion criteria. Among these, 128 had clinical dementia. Those with dementia had greater mean ages of motor onset and death but equivalent mean disease duration. The delay between motor symptom onset and dementia was 1 year or less in 14 individuals, meeting research diagnostic criteria for possible or probable dementia with Lewy bodies (DLB). Braak Lewy body stage was associated with diagnosis of dementia, whereas severities of Alzheimer's disease neuropathologic change (ADNC) and small vessel pathology did not. Pathology of individuals diagnosed with DLB did not differ significantly from that of other patients with PD with dementia. Six percent of individuals with PD and dementia did not have neocortical Lewy bodies; and 68% of the individuals with PD but without dementia did have neocortical Lewy bodies. INTERPRETATION: Neocortical Lewy bodies almost always accompany dementia in PD; however, they also appear in most PD patients without dementia. In some cases, dementia may occur in patients with PD without neocortical Lewy bodies, ADNC, or small vessel disease. Thus, other factors not directly related to these classic neuropathologic features may contribute to PD dementia. ANN NEUROL 2023;93:184-195.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Neocórtex , Doença de Parkinson , Humanos , Corpos de Lewy/patologia , Doença de Parkinson/complicações , Doença por Corpos de Lewy/patologia , Neocórtex/patologia , Doença de Alzheimer/patologia
9.
Neurology ; 99(1): e66-e76, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35418463

RESUMO

BACKGROUND AND OBJECTIVES: People with Parkinson disease (PD) commonly experience cognitive decline, which may relate to increased α-synuclein, tau, and ß-amyloid accumulation. This study examines whether the different proteins predict longitudinal cognitive decline in PD. METHODS: All participants (PD n = 152, controls n = 52) were part of a longitudinal study and completed a lumbar puncture for CSF protein analysis (α-synuclein, total tau [tau], and ß-amyloid42 [ß-amyloid]), a ß-amyloid PET scan, and/or provided a blood sample for APOE genotype (ε4+, ε4-), which is a risk factor for ß-amyloid accumulation. Participants also had comprehensive, longitudinal clinical assessments of overall cognitive function and dementia status, as well as cognitive testing of attention, language, memory, and visuospatial and executive function. We used hierarchical linear growth models to examine whether the different protein metrics predict cognitive change and multivariate Cox proportional hazard models to predict time to dementia conversion. Akaike information criterion was used to compare models for best fit. RESULTS: Baseline measures of CSF ß-amyloid predicted decline for memory (p = 0.04) and overall cognitive function (p = 0.01). APOE genotypes showed a significant group (ε4+, ε4-) effect such that ε4+ individuals declined faster than ε4- individuals in visuospatial function (p = 0.03). Baseline ß-amyloid PET significantly predicted decline in all cognitive measures (all p ≤ 0.004). Neither baseline CSF α-synuclein nor tau predicted cognitive decline. All 3 ß-amyloid--related metrics (CSF, PET, APOE) also predicted time to dementia. Models with ß-amyloid PET as a predictor fit the data the best. DISCUSSION: Presence or risk of ß-amyloid accumulation consistently predicted cognitive decline and time to dementia in PD. This suggests that ß-amyloid has high potential as a prognostic indicator and biomarker for cognitive changes in PD.


Assuntos
Disfunção Cognitiva , Demência , Doença de Parkinson , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Demência/complicações , Humanos , Estudos Longitudinais , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Tomografia por Emissão de Pósitrons , alfa-Sinucleína , Proteínas tau
10.
Ann Clin Transl Neurol ; 9(2): 106-121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060360

RESUMO

OBJECTIVE: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid ß (Aß) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aß, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS: We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aß, and tau with recently developed sandwich ELISAs. RESULTS: We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aß accumulation, although the mean Aß level in LBD was lower than in AD. The presence of Aß was associated with greater α-syn accumulation. Tau accumulation accompanied Aß in only one LBD case. INTERPRETATION: LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aß and α-syn accumulation suggests a pathophysiologic relationship between these two processes.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/análise , Encéfalo/metabolismo , Doença por Corpos de Lewy/metabolismo , alfa-Sinucleína/análise , Proteínas tau/análise , Idoso , Idoso de 80 Anos ou mais , Autopsia , Humanos , Neocórtex/metabolismo
11.
Mov Disord ; 36(4): 948-954, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33253432

RESUMO

BACKGROUND: The clinical diagnosis of Parkinson's disease (PD) requires the presence of parkinsonism and supportive criteria that include a clear and dramatic beneficial response to dopaminergic therapy. Our aim was to test the diagnostic criterion of dopaminergic response by evaluating its association with pathologically confirmed diagnoses in a large population of parkinsonian patients. METHODS: We reviewed clinical data maintained in an electronic medical record from all patients with autopsy data who had been seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2018. All patients with parkinsonism who underwent postmortem neuropathologic examination were included in this analysis. RESULTS: There were 257 unique parkinsonian patients with autopsy-based diagnoses who had received dopaminergic therapy. Marked or moderate response to dopaminergic therapy occurred in 91.2% (166/182) of those with autopsy-confirmed PD, 52.0% (13/25) of those with autopsy-confirmed multiple systems atrophy, 44.4% (8/18) of those with autopsy-confirmed progressive supranuclear palsy, and 1 (1/8) with autopsy-confirmed corticobasal degeneration. Other diagnoses were responsible for the remaining 24 individuals, 9 of whom had a moderate response to dopaminergic therapy. CONCLUSION: A substantial response to dopaminergic therapy is frequent but not universal in PD. An absent response does not exclude PD. In other neurodegenerative disorders associated with parkinsonism, a prominent response may also be evident, but this occurs less frequently than in PD. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico
12.
Ann Neurol ; 87(5): 700-709, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057125

RESUMO

Tau hyperphosphorylation is an early step in tau-mediated neurodegeneration and is associated with intracellular aggregation of tau as neurofibrillary tangles, neuronal and synaptic loss, and eventual cognitive dysfunction in Alzheimer disease. Sleep loss increases the cerebrospinal fluid concentration of amyloid-ß and tau. Using mass spectrometry, we measured tau and phosphorylated tau concentrations in serial samples of cerebrospinal fluid collected from participants who were sleep-deprived, treated with sodium oxybate, or allowed to sleep normally. We found that sleep loss affected phosphorylated tau differently depending on the modified site. These findings suggest a mechanism for sleep loss to increase risk of Alzheimer disease. ANN NEUROL 2020;87:700-709.


Assuntos
Privação do Sono/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação
13.
Sci Transl Med ; 12(529)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024799

RESUMO

Apolipoprotein E (APOE) ε4 genotype is associated with increased risk of dementia in Parkinson's disease (PD), but the mechanism is not clear, because patients often have a mixture of α-synuclein (αSyn), amyloid-ß (Aß), and tau pathologies. APOE ε4 exacerbates brain Aß pathology, as well as tau pathology, but it is not clear whether APOE genotype independently regulates αSyn pathology. In this study, we generated A53T αSyn transgenic mice (A53T) on Apoe knockout (A53T/EKO) or human APOE knockin backgrounds (A53T/E2, E3, and E4). At 12 months of age, A53T/E4 mice accumulated higher amounts of brainstem detergent-insoluble phosphorylated αSyn compared to A53T/EKO and A53T/E3; detergent-insoluble αSyn in A53T/E2 mice was undetectable. By immunohistochemistry, A53T/E4 mice displayed a higher burden of phosphorylated αSyn and reactive gliosis compared to A53T/E2 mice. A53T/E2 mice exhibited increased survival and improved motor performance compared to other APOE genotypes. In a complementary model of αSyn spreading, striatal injection of αSyn preformed fibrils induced greater accumulation of αSyn pathology in the substantia nigra of A53T/E4 mice compared to A53T/E2 and A53T/EKO mice. In two separate cohorts of human patients with PD, APOE ε4/ε4 individuals showed the fastest rate of cognitive decline over time. Our results demonstrate that APOE genotype directly regulates αSyn pathology independent of its established effects on Aß and tau, corroborate the finding that APOE ε4 exacerbates pathology, and suggest that APOE ε2 may protect against αSyn aggregation and neurodegeneration in synucleinopathies.


Assuntos
Sinucleinopatias , Animais , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Progressão da Doença , Genótipo , Humanos , Camundongos
14.
Neurology ; 94(7): e718-e728, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852813

RESUMO

OBJECTIVE: To evaluate resting-state functional connectivity as a potential prognostic biomarker of Parkinson disease (PD) progression. The study examined longitudinal changes in cortical resting-state functional connectivity networks in participants with PD compared to controls as well as in relation to baseline protein measures and longitudinal clinical progression. METHODS: Individuals with PD without dementia (n = 64) and control participants (n = 27) completed longitudinal resting-state MRI scans and clinical assessments including full neuropsychological testing after overnight withdrawal of PD medications ("off"). A total of 55 participants with PD and 20 control participants also completed baseline ß-amyloid PET scans and lumbar punctures for CSF protein levels of α-synuclein, ß-amyloid, and tau. Longitudinal analyses were conducted with multilevel growth curve modeling, a type of mixed-effects model. RESULTS: Functional connectivity within the sensorimotor network and the interaction between the dorsal attention network with the frontoparietal control network decreased significantly over time in participants with PD compared to controls. Baseline CSF α-synuclein protein levels predicted decline in the sensorimotor network. The longitudinal decline in the dorsal attention-frontoparietal internetwork strength correlated with the decline in cognitive function. CONCLUSIONS: These results indicate that α-synuclein levels may influence longitudinal declines in motor-related functional connectivity networks. Further, the interaction between cortical association networks declines over time in PD prior to dementia onset and may serve as a prognostic marker for the development of dementia.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Deficiências na Proteostase/diagnóstico por imagem , Deficiências na Proteostase/fisiopatologia , Idoso , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Tomografia por Emissão de Pósitrons , Descanso
15.
J Biol Chem ; 294(17): 6696-6709, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30824544

RESUMO

Aggregates of the RNA-binding protein TDP-43 (TAR DNA-binding protein) are a hallmark of the overlapping neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The process of TDP-43 aggregation remains poorly understood, and whether it includes formation of intermediate complexes is unknown. Here, we analyzed aggregates derived from purified TDP-43 under semidenaturing conditions, identifying distinct oligomeric complexes at the initial time points before the formation of large aggregates. We found that this early oligomerization stage is primarily driven by TDP-43's RNA-binding region. Specific binding to GU-rich RNA strongly inhibited both TDP-43 oligomerization and aggregation, suggesting that RNA interactions are critical for maintaining TDP-43 solubility. Moreover, we analyzed TDP-43 liquid-liquid phase separation and detected similar detergent-resistant oligomers upon maturation of liquid droplets into solid-like fibrils. These results strongly suggest that the oligomers form during the early steps of TDP-43 misfolding. Importantly, the ALS-linked TDP-43 mutations A315T and M337V significantly accelerate aggregation, rapidly decreasing the monomeric population and shortening the oligomeric phase. We also show that aggregates generated from purified TDP-43 seed intracellular aggregation detected by established TDP-43 pathology markers. Remarkably, cytoplasmic aggregate seeding was detected earlier for the A315T and M337V variants and was 50% more widespread than for WT TDP-43 aggregates. We provide evidence for an initial step of TDP-43 self-assembly into intermediate oligomeric complexes, whereby these complexes may provide a scaffold for aggregation. This process is altered by ALS-linked mutations, underscoring the role of perturbations in TDP-43 homeostasis in protein aggregation and ALS-FTD pathogenesis.


Assuntos
Biopolímeros/metabolismo , Proteínas de Ligação a DNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/genética , Dissulfetos/metabolismo , Células HEK293 , Humanos , Peso Molecular , Mutação , Transição de Fase , Dobramento de Proteína , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/metabolismo
16.
J Biol Chem ; 294(3): 1045-1058, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30478174

RESUMO

Parkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology. Prion strains are aggregated conformers that stably propagate in vivo and cause disease with defined incubation times and patterns of neuropathology. Indeed, tau prions have been well defined, and research suggests that both α-syn and ß-amyloid may also form strains. However, there is a lack of studies characterizing PD- versus MSA-derived α-syn strains or demonstrating stable propagation of these unique conformers between cells or animals. To fill this gap, we used an assay based on FRET that exploits a HEK293T "biosensor" cell line stably expressing α-syn (A53T)-CFP/YFP fusion proteins to detect α-syn seeds in brain extracts from PD and MSA patients. Both soluble and insoluble fractions of MSA extracts had robust seeding activity, whereas only the insoluble fractions of PD extracts displayed seeding activity. The morphology of MSA-seeded inclusions differed from PD-seeded inclusions. These differences persisted upon propagation of aggregation to second-generation biosensor cells. We conclude that PD and MSA feature α-syn conformers with very distinct biochemical properties that can be transmitted to α-syn monomers in a cell system. These findings are consistent with the idea that distinct α-syn strains underlie PD and MSA and offer possible directions for synucleinopathy diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/análise , Encéfalo/patologia , Células HEK293 , Humanos , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia
17.
Biomol NMR Assign ; 12(1): 195-199, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29476328

RESUMO

Fibrils of the protein α-synuclein (α-syn) are implicated in the pathogenesis of Parkinson's disease and related neurodegenerative disorders. We have reported a high-resolution structure (PDB 2N0A) of an α-syn fibril form prepared by in vitro incubation of monomeric protein in 50 mM sodium phosphate buffer pH 7.4 with 0.1 mM EDTA and 0.01% sodium azide. In parallel with this structure determination, ongoing studies of small molecule ligands binding to α-syn fibrils, prepared in 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) buffer, have been in progress, and it is therefore of interest to determine the structural similarity of these forms. Here we report the 13C and 15N resonance assignments for α-syn fibrils prepared with Tris-HCl buffer (pH 7.7 at 37 °C) and 100 mM NaCl. These fibrillization conditions yield a form with fibril core chemical shifts highly similar to those we reported (BMRB 16939) in the course of determining the high-resolution 2N0A structure, with the exception of some small perturbations from T44 to V55, including two sets of peaks observed for residues T44-V48. Additional differences occur in the patterns of observed residues in the primarily unstructured N-terminus. These results demonstrate a common fold of the fibril core for α-syn fibrils prepared in phosphate or Tris-HCl buffer at moderate ionic strength.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Concentração Osmolar , alfa-Sinucleína/química , Multimerização Proteica , Estrutura Secundária de Proteína
18.
Bioorg Med Chem Lett ; 28(6): 1011-1019, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29482941

RESUMO

Here we report the synthesis and in vitro evaluation of 25 new quinolinyl analogues for α-synuclein aggregates. Three lead compounds were subsequently labeled with carbon-11 or fluorine-18 to directly assess their potency in a direct radioactive competitive binding assay ng both α-synuclein fibrils and tissue homogenates from Alzheimer's disease (AD) cases. The modest binding affinities of these three radioligands toward α-synuclein were comparable with results from the Thioflavin T fluorescence assay. However, all three ligand also showed modest binding affinity to the AD homogenates and lack selectivity for α-synuclein. The structure-activity relationship data from these 25 analogues will provide useful information for design and synthesis of new compounds for imaging α-synuclein aggregation.


Assuntos
Desenho de Fármacos , Quinolinas/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Relação Dose-Resposta a Droga , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
19.
J Biol Chem ; 292(22): 9034-9050, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28373279

RESUMO

The accumulation of α-synuclein (α-syn) fibrils in neuronal inclusions is the defining pathological process in Parkinson's disease (PD). A pathogenic role for α-syn fibril accumulation is supported by the identification of dominantly inherited α-syn (SNCA) gene mutations in rare cases of familial PD. Fibril formation involves a spontaneous nucleation event in which soluble α-syn monomers associate to form seeds, followed by fibril growth during which monomeric α-syn molecules sequentially associate with existing seeds. To better investigate this process, we developed sensitive assays that use the fluorescein arsenical dye FlAsH (fluorescein arsenical hairpin binder) to detect soluble oligomers and mature fibrils formed from recombinant α-syn protein containing an N-terminal bicysteine tag (C2-α-syn). Using seed growth by monomer association (SeGMA) assays to measure fibril growth over 3 h in the presence of C2-α-syn monomer, we observed that some familial PD-associated α-syn mutations (i.e. H50Q and A53T) greatly increased growth rates, whereas others (E46K, A30P, and G51D) decreased growth rates. Experiments with wild-type seeds extended by mutant monomer and vice versa revealed that single-amino acid differences between seed and monomer proteins consistently decreased growth rates. These results demonstrate that α-syn monomer association during fibril growth is a highly ordered process that can be disrupted by misalignment of individual amino acids and that only a subset of familial-PD mutations causes fibril accumulation through increased fibril growth rates. The SeGMA assays reported herein can be utilized to further elucidate structural requirements of α-syn fibril growth and to identify growth inhibitors as a potential therapeutic approach in PD.


Assuntos
Amiloide/química , Mutação de Sentido Incorreto , Doença de Parkinson , Agregação Patológica de Proteínas , alfa-Sinucleína/química , Substituição de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
Sci Rep ; 6: 35636, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805057

RESUMO

Fluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aß pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer's disease (AD) brain sections, and remarkable specificity for mapping Aß compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [18F]-9, a PET tracer demonstrates superior (2-10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aß plaques. Pharmacokinetic studies indicate high initial influx of [18F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques. Following incubation in human serum, [18F]-9 indicates presence of parental compound up to 3h thus indicating its stability. Furthermore, in vitro autoradiography studies of [18F]-9 with AD brain tissue sections and ex vivo autoradiography studies in transgenic mouse brain sections show cortical Aß binding, and a fair correlation with Aß immunostaining. Finally, multiphoton- and microPET/CT imaging indicate its ability to penetrate brain and label parenchymal plaques in transgenic mice. Following further validation of its performance in other AD rodent models and nonhuman primates, Fluselenamyl could offer a platform technology for monitoring earliest stages of Aß pathophysiology in vivo.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Encéfalo/diagnóstico por imagem , Compostos Organosselênicos/química , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Doença de Alzheimer/diagnóstico por imagem , Animais , Autorradiografia/métodos , Sítios de Ligação/fisiologia , Biomarcadores/líquido cefalorraquidiano , Camundongos , Camundongos Transgênicos , Compostos Organosselênicos/síntese química , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA