Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hypertens Res ; 47(5): 1273-1287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438725

RESUMO

m6A (N6­methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.


Assuntos
Adenosina , Adenosina/análogos & derivados , Hipertensão Arterial Pulmonar , Humanos , Metilação , Adenosina/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Animais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Metilação de RNA
2.
Cardiovasc Ther ; 2022: 9615674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692375

RESUMO

Purpose: L-carnitine (LC) is considered to have good therapeutic potential for myocardial infarction (MI), but its mechanism has not been clarified. The aim of the study is to elucidate the cardioprotective effects of LC in mice following MI and related mechanisms. Methods: ICR mice were treated with LC for 2 weeks after induction of MI with ligation of left anterior descending artery. Electrocardiographic (ECG) recording and echocardiography were used to evaluate cardiac function. H&E staining, TTC staining, and Masson staining were performed for morphological analysis and cardiac fibrosis. ELISA and immunofluorescence were utilized to detect biomarkers and inflammatory mediators. The key proteins in the Bax/Bcl-2 signaling pathway were also examined by Western blot. Results: Both echocardiography and histological measurement showed an improvement in cardiac function and morphology. Biomarkers such as LDH, NT-proBNP, cTnT, and AST, as well as the inflammatory cytokines IL-1ß, IL-6, and TNF-α, were decreased in plasma of mice receiving LC treatment after myocardial injury. In addition, the expression of α-SMA as well as the key proteins in the Bax/Bcl-2 signaling pathway in cardiac myocardium were much lower in mice with LC treatment compared to those without after MI. Conclusions: Our data suggest that LC can effectively ameliorate left ventricular (LV) remodeling after MI, and its beneficial effects on myocardial function and remodeling may be attributable at least in part to anti-inflammatory and inhibition of the Bax/Bcl-2 apoptotic signaling pathway.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Apoptose , Carnitina/metabolismo , Carnitina/farmacologia , Carnitina/uso terapêutico , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos ICR , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismo
3.
Acta Pharmacol Sin ; 43(4): 840-849, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34267346

RESUMO

Luteolin is a flavonoid in a variety of fruits, vegetables, and herbs, which has shown anti-inflammatory, antioxidant, and anti-cancer neuroprotective activities. In this study, we investigated the potential beneficial effects of luteolin on memory deficits and neuroinflammation in a triple-transgenic mouse model of Alzheimer's disease (AD) (3 × Tg-AD). The mice were treated with luteolin (20, 40 mg · kg-1 · d-1, ip) for 3 weeks. We showed that luteolin treatment dose-dependently improved spatial learning, ameliorated memory deficits in 3 × Tg-AD mice, accompanied by inhibiting astrocyte overactivation (GFAP) and neuroinflammation (TNF-α, IL-1ß, IL-6, NO, COX-2, and iNOS protein), and decreasing the expression of endoplasmic reticulum (ER) stress markers GRP78 and IRE1α in brain tissues. In rat C6 glioma cells, treatment with luteolin (1, 10 µM) dose-dependently inhibited LPS-induced cell proliferation, excessive release of inflammatory cytokines, and increase of ER stress marker GRP78. In conclusion, luteolin is an effective agent in the treatment of learning and memory deficits in 3 × Tg-AD mice, which may be attributable to the inhibition of ER stress in astrocytes and subsequent neuroinflammation. These results provide the experimental basis for further research and development of luteolin as a therapeutic agent for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Animais , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/farmacologia , Endorribonucleases/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias , Proteínas Serina-Treonina Quinases , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA