RESUMO
Cefiderocol is the first approved catechol-conjugated cephalosporin against multidrug-resistant Gram-negative bacteria, while its application was limited by poor chemical stability associated with the pyrrolidinium linker, moderate potency against Klebsiella pneumoniae and Acinetobacter baumannii, intricate procedures for salt preparation, and potential hypersensitivity. To address these issues, a series of novel catechol-conjugated derivatives were designed, synthesized, and evaluated. Extensive structure-activity relationships and structure-metabolism relationships (SMR) were conducted, leading to the discovery of a promising compound 86b (Code no. YFJ-36) with a new thioether linker. 86b exhibited superior and broad-spectrum in vitro antibacterial activity, especially against A. baumannii and K. pneumoniae, compared with cefiderocol. Potent in vivo efficacy was observed in a murine systemic infection model. Furthermore, the physicochemical stability of 86b in fluid medium at pH 6-8 was enhanced. 86b also reduced potential the risk of allergy owing to the quaternary ammonium linker. The improved properties of 86b supported its further research and development.
Assuntos
Antibacterianos , Catecóis , Desenho de Fármacos , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Catecóis/química , Catecóis/farmacologia , Catecóis/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Bactérias Gram-Negativas/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , beta-Lactamas/farmacologia , beta-Lactamas/síntese química , beta-Lactamas/química , Cefalosporinas/farmacologia , Cefalosporinas/síntese química , Cefalosporinas/química , Descoberta de DrogasRESUMO
A series of novel pyridone conjugated monobactams with various substituents at the (4) position were synthesized and evaluated for their antibacterial activities against a panel of multidrug-resistant (MDR) Gram-negative bacteria in vitro. Compounds 46d, 54 and 75e displayed good to moderate activities against P. aeruginosa, among which the activity of 75e against P. aeruginosa was comparable to that of BAL30072 under iron limitation condition. Compounds 35, 46d, 54, 56a, 56c and 56d exhibited good to excellent antibacterial activities against E. coli and K. pneumoniae, which were comparable or superior to that of BAL30072. In vitro liver microsomal stability was further evaluated and the results manifested that Compounds 35, 46d and 54 were metabolically stable in human liver microsomes.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Monobactamas/química , Monobactamas/farmacologia , Antibacterianos/síntese química , Desenho de Fármacos , Resistência a Múltiplos Medicamentos , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Monobactamas/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Piridonas/síntese química , Piridonas/química , Piridonas/farmacologiaRESUMO
Conjugating a siderophore to an antibiotic is a promising strategy to overcome the permeability-mediated resistance of Gram-negative pathogens. On the basis of the structure of BAL30072, novel pyridone-conjugated monosulfactams incorporating diverse substituents into the methylene linker between the 1,3-dihydroxypyridin-4(1H)-one and the aminothiazole oxime were designed and synthesized. Structure-activity relationship studies revealed that a variety of substituents were tolerated, with isopropyl (compound 12c) and methylthiomethyl (compound 16a) showing the best efficacy against multidrug-resistant (MDR) Gram-negative pathogens. In addition, compound 12c exhibits a good free fraction rate in an in vitro human plasma protein binding test, along with a low clearance and favorable plasma exposure in vivo. In a murine systemic infection model with MDR Klebsiella pneumoniae, compound 12c shows an ED50 of 10.20 mg/kg. Taken together, the results indicate that compound 12c is a promising drug candidate for the treatment of serious infections caused by MDR Gram-negative pathogens.