Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1357347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469164

RESUMO

Introduction: Deterioration of cognitive functions is commonly associated with aging, although there is wide variation in the onset and manifestation. Albeit heterogeneity in age-related cognitive decline has been studied at the cellular and molecular level, there is poor evidence for electrophysiological correlates. The aim of the current study was to address the electrophysiological basis of heterogeneity of cognitive functions in cognitively Inferior and Superior old (19-20 months) rats in the ventral tegmental area (VTA) and the hippocampus, having Young (12 weeks) rats as a control. The midbrain VTA operates as a hub amidst affective and cognitive facets, processing sensory inputs related to motivated behaviours and hippocampal memory. Increasing evidence shows direct dopaminergic and non-dopaminergic input from the VTA to the hippocampus. Methods: Aged Superior and Inferior male rats were selected from a cohort of 88 animals based on their performance in a spatial learning and memory task. Using in vivo single-cell recording in the VTA, we examined the electrical activity of different neuronal populations (putative dopaminergic, glutamatergic and GABAergic neurons). In the same animals, basal synaptic transmission and synaptic plasticity were examined in hippocampal slices. Results: Electrophysiological recordings from the VTA and hippocampus showed alterations associated with aging per se, together with differences specifically linked to the cognitive status of aged animals. In particular, the bursting activity of dopamine neurons was lower, while the firing frequency of glutamatergic neurons was higher in VTA of Inferior old rats. The response to high-frequency stimulation in hippocampal slices also discriminated between Superior and Inferior aged animals. Discussion: This study provides new insight into electrophysiological information underlying compromised cerebral ageing. Further understanding of brain senescence, possibly related to neurocognitive decline, will help develop new strategies towards the preservation of a high quality of life.

2.
Biomolecules ; 13(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759815

RESUMO

The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transporte Biológico , Relação Estrutura-Atividade , Norepinefrina , Ligantes
3.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298523

RESUMO

Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer's Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212-/-) mice, we examined the effects of corticosterone (the rodent's equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR-132/212-/- hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR-132/212-/- hippocampi. Sirt1 levels were also endogenously enhanced in the miR-132/212-/- hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR-132/212-/- hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212-/- mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.


Assuntos
Corticosterona , MicroRNAs , Camundongos , Humanos , Animais , Corticosterona/farmacologia , Corticosterona/metabolismo , Hidrocortisona/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Plasticidade Neuronal
4.
Biomolecules ; 12(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35883437

RESUMO

Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson's and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Motivação/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ratos
5.
Mol Psychiatry ; 26(12): 7076-7090, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34244620

RESUMO

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Plasticidade Neuronal , Envelhecimento , Animais , Encéfalo , Hipocampo , Plasticidade Neuronal/fisiologia , Ratos
6.
Geroscience ; 41(3): 309-319, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31129861

RESUMO

Impairment of procedural memory is a frequent and severe symptom in many neurological and psychiatric diseases as well as during aging. Our aim was to establish an assay in rats in which procedural learning and changes in performance can be studied on the long term. The work was done in the frame of a larger project aiming to establish a complex cognitive animal test battery of high translational value. The equipment was a 190-cm-diameter circular water tank where 12 flower pots were placed upside down in a circle with increasing distances (18-46 cm) between the adjacent ones. Male Lister Hooded and Long-Evans rats were allowed to move on the pots for 3 min. The arena was filled with shallow water to make the rats stay on the pots. Animals were obviously motivated to move around on the pots; however, the distance which required jumping (> 26 cm) meant a barrier for some of them. Development of motor skill was measured by the longest distance successfully spanned. A relatively flat bell-shaped age dependence was observed, with a peak at 13 months of age. A gradual decline in performance could be observed after the age of 20 months which preceded the appearance of overt physical weakness. Long-Evans rats showed more homogeneous performance and higher individual stability than Lister Hooded rats. The method is appropriate to study the development of motor learning and to follow its age-dependent changes. It may also serve as an assay for testing potential drugs for improving motor skills and/or procedural memory.


Assuntos
Envelhecimento/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Animais , Rememoração Mental/fisiologia , Debilidade Muscular/fisiopatologia , Ratos , Ratos Long-Evans , Especificidade da Espécie , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA