Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 382: 110568, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277066

RESUMO

Glycogen phosphorylase (GP) is the rate-determining enzyme in the glycogenolysis pathway. Glioblastoma (GBM) is amongst the most aggressive cancers of the central nervous system. The role of GP and glycogen metabolism in the context of cancer cell metabolic reprogramming is recognised, so that GP inhibitors may have potential treatment benefits. Here, baicalein (5,6,7-trihydroxyflavone) is studied as a GP inhibitor, and for its effects on glycogenolysis and GBM at the cellular level. The compound is revealed as a potent GP inhibitor against human brain GPa (Ki = 32.54 µM), human liver GPa (Ki = 8.77 µM) and rabbit muscle GPb (Ki = 5.66 µM) isoforms. It is also an effective inhibitor of glycogenolysis (IC50 = 119.6 µM), measured in HepG2 cells. Most significantly, baicalein demonstrated anti-cancer potential through concentration- and time-dependent decrease in cell viability for three GBM cell-lines (U-251 MG, U-87 MG, T98-G) with IC50 values of ∼20-55 µM (48- and 72-h). Its effectiveness against T98-G suggests potential against GBM with resistance to temozolomide (the first-line therapy) due to a positive O6-methylguanine-DNA methyltransferase (MGMT) status. The solved X-ray structure of rabbit muscle GP-baicalein complex will facilitate structure-based design of GP inhibitors. Further exploration of baicalein and other GP inhibitors with different isoform specificities against GBM is suggested.


Assuntos
Glioblastoma , Animais , Humanos , Coelhos , Cinética , Glioblastoma/tratamento farmacológico , Cristalografia por Raios X , Glicogênio Fosforilase/metabolismo
2.
J Agric Food Chem ; 68(37): 10191-10199, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32840370

RESUMO

Anthocyanins (ACNs) are dietary phytochemicals with an acknowledged therapeutic significance. Pomegranate juice (PJ) is a rich source of ACNs with potential applications in nutraceutical development. Glycogen phosphorylase (GP) catalyzes the first step of glycogenolysis and is a molecular target for the development of antihyperglycemics. The inhibitory potential of the ACN fraction of PJ is assessed through a combination of in vitro assays, ex vivo investigation in hepatic cells, and X-ray crystallography studies. The ACN extract potently inhibits muscle and liver isoforms of GP. Affinity crystallography reveals the structural basis of inhibition through the binding of pelargonidin-3-O-glucoside at the GP inhibitor site. The glucopyranose moiety is revealed as a major determinant of potency as it promotes a structural binding mode different from that observed for other flavonoids. This inhibitory effect of the ACN scaffold and its binding mode at the GP inhibitor binding site may have significant implications for future structure-based drug design endeavors.


Assuntos
Antocianinas/química , Inibidores Enzimáticos/química , Sucos de Frutas e Vegetais/análise , Glicogênio Fosforilase/química , Extratos Vegetais/química , Punica granatum/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Glicogênio Fosforilase/antagonistas & inibidores , Células Hep G2 , Humanos , Cinética , Ligação Proteica , Coelhos
3.
Bioorg Chem ; 102: 104003, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771768

RESUMO

Glycogen phosphorylase (GP) is an important target for the development of new anti-hyperglycaemic agents. Flavonoids are novel inhibitors of GP, but their mode of action is unspecific in terms of the GP binding sites involved. Towards design of synthetic flavonoid analogues acting specifically at the inhibitor site and to exploit the site's hydrophobic pocket, chrysin has been employed as a lead compound for the in silico screening of 1169 new analogues with different B ring substitutions. QM/MM-PBSA binding free energy calculations guided the final selection of eight compounds, subsequently synthesised using a Baker-Venkataraman rearrangement-cyclisation approach. Kinetics experiments against rabbit muscle GPa and GPb together with human liver GPa, revealed three of these compounds (11, 20 and 43) among the most potent that bind at the site (Ki s < 4 µM for all three isoforms), and more potent than previously reported natural flavonoid inhibitors. Multiple inhibition studies revealed binding exclusively at the inhibitor site. The binding is synergistic with glucose suggesting that inhibition could be regulated by blood glucose levels and would decrease as normoglycaemia is achieved. Compound 43 was an effective inhibitor of glycogenolysis in hepatocytes (IC50 = 70 µM), further promoting these compounds for optimization of their drug-like potential. X-ray crystallography studies revealed the B-ring interactions responsible for the observed potencies.


Assuntos
Cristalografia por Raios X/métodos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonoides/uso terapêutico , Glicogênio Fosforilase/antagonistas & inibidores , Hiperglicemia/tratamento farmacológico , Animais , Produtos Biológicos , Humanos , Modelos Moleculares , Coelhos , Relação Estrutura-Atividade
4.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987252

RESUMO

Structure-based design and synthesis of two biphenyl-N-acyl-ß-d-glucopyranosylamine derivatives as well as their assessment as inhibitors of human liver glycogen phosphorylase (hlGPa, a pharmaceutical target for type 2 diabetes) is presented. X-ray crystallography revealed the importance of structural water molecules and that the inhibitory efficacy correlates with the degree of disturbance caused by the inhibitor binding to a loop crucial for the catalytic mechanism. The in silico-derived models of the binding mode generated during the design process corresponded very well with the crystallographic data.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Glucosamina/análogos & derivados , Glicogênio Fosforilase/química , Relação Quantitativa Estrutura-Atividade , Sítios de Ligação , Domínio Catalítico , Técnicas de Química Sintética , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Glucosamina/síntese química , Glucosamina/química , Glucosamina/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA