Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7682, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561442

RESUMO

It has been shown that ultraviolet (UV) irradiation is responsible for the destruction of organic compounds on the surface of Mars. When combined with the photochemically-driven production of oxychlorines (ClOx) it can generate highly reactive species that can alter or destroy organic compounds. However, it has been assumed that since UV only penetrates the top few millimeters of the martian regolith, reactive ClOx oxidants are only produced on the surface. Of all the oxychlorine intermediates produced, gaseous chlorine dioxide [ClO2(g)] is of particular interest, being a highly reactive gas with the ability to oxidize organic compounds. Here we report on a set of experiments under Mars ambient conditions showing the production and permeation of ClO2(g) and its reaction with alanine as a test compound. Contrary to the accepted paradigm that UV irradiation on Mars only interacts with a thin layer of surface regolith, our results show that photochemically-generated ClO2(g) can permeate below the surface, depositing ClOx species (mainly Cl- and ClO 3 - ) and destroying organic compounds. With varying levels of humidity and abundant chloride and oxychlorines on Mars, our findings show that permeation of ClO2(g) must be considered as a significant contributing factor in altering, fragmenting, or potentially destroying buried organic compounds on Mars.

2.
Commun Earth Environ ; 4(1): 381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665180

RESUMO

Studies to understand the growth of organisms on Mars are hampered by the use of simulants to duplicate martian mineralogy and chemistry. Even though such materials are improving, no terrestrial simulant can replace a real martian sample. Here we report the use of actual martian regolith, in the form of Mars meteorite EETA79001 sawdust, to demonstrate its ability to support the growth of four microorganisms, E. coli. Eucapsis sp., Chr20-20201027-1, and P. halocryophilus, for up to 23 days under terrestrial conditions using regolith:water ratios from 4:1 to 1:10. If the EETA79001 sawdust is widely representative of regolith on the martian surface, our results imply that microbial life under appropriate conditions could have been present on Mars in the past and/or today in the subsurface, and that the regolith does not contain any bactericidal agents. The results of our study have implications not only for putative martian microbial life but also for building bio-sustainable human habitats on Mars.

3.
Astrobiology ; 22(10): 1210-1221, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36000998

RESUMO

The search for life elsewhere in the Universe goes together with the search for liquid water. Life as we know it requires water; however, it is possible for microbial life to exist under hyperarid conditions with a minimal amount of water. We report on the ability of two typical terrestrial bacteria (Escherichia coli B and Eucapsis sp) and two extremophiles (Gloeocapsa-20201027-1 sp and Planococcus halocryophilus) to grow and survive in three martian soil (regolith) simulants (Mohave Mars Simulant-1 [MMS-1] F, Mars Global Simulant-1 [MGS-1], and JSC Mars-1A [JSC]). Survival and growth were assessed over a 21-day period under terrestrial conditions and with water:soil (vol:wt) ratios that varied from 0.25:1 to 5:1. We found that Eucapsis and Gloeocapsa sp grew best in the simulants MMS and JSC, respectively, while P. halocryophilus growth rates were better in the JSC simulant. As expected, E. coli did not show significant growth. Our results indicate that these martian simulants and thus martian regolith, with minimal or no added nutrients or water, can support the growth of extremophiles such as P. halocryphilus and Gloeocapsa. Similar extremophiles on early Mars may have survived to the present in near-surface ecological niches analogous to those where these organisms exist on Earth.


Assuntos
Cianobactérias , Extremófilos , Marte , Escherichia coli , Meio Ambiente Extraterreno , Solo , Água
4.
Astrobiology ; 22(6): 685-712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35290745

RESUMO

Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus' plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.


Assuntos
Saturno , Exobiologia , Meio Ambiente Extraterreno/química , Gelo , Planetas
5.
Microorganisms ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065975

RESUMO

The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology.

6.
Astrobiology ; 21(7): 793-801, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33787313

RESUMO

The degradation of glycine (Gly), proline (Pro), and tryptophan (Trp) was studied under simulated Mars conditions during UV-driven production of oxychlorines and compared under Mars ambient and humid conditions, as films, and with addition of sodium chloride (NaCl), sodium chlorate (NaClO3), and sodium perchlorate (NaClO4) salts. It was shown that glycine sustained no significant destruction in either of the non-salt samples under Mars ambient or humid conditions. However, its degradation increased in the presence of any of the three salts and under both conditions though more under humid conditions. Proline degradation followed the order No Salt > NaCl > NaClO3 > NaClO4 under Mars ambient conditions but the reverse order under Mars humid conditions. A mechanism is proposed to explain how water and silica participate in these degradation reactions and how it is strongly influenced by the identity of the salt and its ability to promote deliquescence. No difference was observed for tryptophan between Mars ambient and humid conditions, or for the different salts, suggesting its degradation mechanism is different compared to glycine and proline. The results reported here will help to better understand the survival of amino acids in the presence of oxychlorines and UV on Mars and thus provide new insights for the detection of organic compounds on future Mars missions.


Assuntos
Meio Ambiente Extraterreno , Marte , Aminoácidos , Cloretos , Sais
7.
Sci Rep ; 10(1): 6, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913316

RESUMO

The current understanding of the Martian surface indicates that briny environments at the near-surface are temporarily possible, e.g. in the case of the presumably deliquescence-driven Recurring Slope Lineae (RSL). However, whether such dynamic environments are habitable for terrestrial organisms remains poorly understood. This hypothesis was tested by developing a Closed Deliquescence System (CDS) consisting of a mixture of desiccated Martian Regolith Analog (MRA) substrate, salts, and microbial cells, which over the course of days became wetted through deliquescence. The methane produced via metabolic activity for three methanogenic archaea: Methanosarcina mazei, M. barkeri and M. soligelidi, was measured after exposing them to three different MRA substrates using either NaCl or NaClO4 as a hygroscopic salt. Our experiments showed that (1) M. soligelidi rapidly produced methane at 4 °C, (2) M. barkeri produced methane at 28 °C though not at 4 °C, (3) M. mazei was not metabolically reactivated through deliquescence, (4) none of the species produced methane in the presence of perchlorate, and (5) all species were metabolically most active in the phyllosilicate-containing MRA. These results emphasize the importance of the substrate, microbial species, salt, and temperature used in the experiments. Furthermore, we show here for the first time that water provided by deliquescence alone is sufficient to rehydrate methanogenic archaea and to reactivate their metabolism under conditions roughly analogous to the near-subsurface Martian environment.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Marte , Metano/metabolismo , Methanosarcina/fisiologia , Sais/química , Água/química , Crescimento Quimioautotrófico , Metano/análise
8.
Astrobiology ; 19(6): 711-721, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31062993

RESUMO

The detection of chlorinated hydrocarbons by Curiosity on Mars has been attributed to the presence of unidentified indigenous organic matter. Similarly, oxychlorines on Earth have been proposed to be responsible for the apparent lack of organics in the Atacama Desert. The presence of perchlorate (ClO4-) poses a unique challenge to the measurement of organic matter due to the oxidizing power of oxychlorines during commonly used pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) methods. Here, we show that perchlorates and other oxyanion salts inhibit the detection of organic compounds but that removing these problematic species prior to pyrolysis by using an optimal sample extraction duration and suitable ratios of water to sample mass enables analysis. We have characterized leached and unleached samples containing perchlorates from the Atacama Desert and have found that after leaching, the py-GC-MS chromatograms of the dried mineral residues show identifiable biomarkers associated with indigenous cyanobacteria. Samples which were pyrolyzed without leaching showed no detectable organic matter other than background siloxane and very weak or no trace of detectable polychlorinated benzenes. Dried sample residues remaining after leaching, the mineral matrix and water-insoluble organic matter, showed a strong organic response in all cases when analyzed by py-GC-MS. These residues are most likely the product of the pyrolysis of water-insoluble organics originally present in the samples. In addition, our results imply that previous soil analyses which contained high levels of oxyanions and concluded that organics were either not present or were present at extremely low levels should be reexamined.


Assuntos
Biomarcadores Ambientais , Meio Ambiente Extraterreno/química , Marte , Compostos Orgânicos/análise , Percloratos/química , Clima Desértico , Exobiologia/métodos , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos/química , Oxirredução , Solo/química
9.
Astrobiology ; 18(9): 1171-1180, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29664686

RESUMO

It is well known that dissolved salts can significantly lower the freezing point of water and thus extend habitability to subzero conditions. However, most investigations thus far have focused on sodium chloride as a solute. In this study, we report on the survivability of the bacterial strain Planococcus halocryophilus in sodium, magnesium, and calcium chloride or perchlorate solutions at temperatures ranging from +25°C to -30°C. In addition, we determined the survival rates of P. halocryophilus when subjected to multiple freeze/thaw cycles. We found that cells suspended in chloride-containing samples have markedly increased survival rates compared with those in perchlorate-containing samples. In both cases, the survival rates increase with lower temperatures; however, this effect is more pronounced in chloride-containing samples. Furthermore, we found that higher salt concentrations increase survival rates when cells are subjected to freeze/thaw cycles. Our findings have important implications not only for the habitability of cold environments on Earth but also for extraterrestrial environments such as that of Mars, where cold brines might exist in the subsurface and perhaps even appear temporarily at the surface such as at recurring slope lineae.


Assuntos
Temperatura Baixa , Viabilidade Microbiana , Planococcus (Bactéria)/crescimento & desenvolvimento , Sais/química , Cloretos/análise , Congelamento , Concentração Osmolar , Percloratos/química , Água
10.
Proc Natl Acad Sci U S A ; 115(11): 2670-2675, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483268

RESUMO

Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Clima Desértico , Solo/química , América do Sul
11.
Astrobiology ; 18(10): 1318-1328, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29424566

RESUMO

Locations on Earth that provide insights into processes that may be occurring or may have occurred throughout martian history are often broadly deemed "Mars analog environments." As no single locale can precisely represent a past or present martian environment, it is important to focus on characterization of terrestrial processes that produce analogous features to those observed in specific regions of Mars or, if possible, specific time periods during martian history. Here, we report on the preservation of ionic species in soil samples collected from the Tindouf region of Morocco and compare them with the McMurdo Dry Valleys of Antarctica, the Atacama Desert in Chile, the martian meteorite EETA79001, and the in situ Mars analyses from the Phoenix Wet Chemistry Laboratory (WCL). The Moroccan samples show the greatest similarity with those from Victoria Valley, Beacon Valley, and the Atacama, while being consistently depleted compared to University Valley and enriched compared to Taylor Valley. The NO3/Cl ratios are most similar to Victoria Valley and Atacama, while the SO4/Cl ratios are similar to those from Beacon Valley, Victoria Valley, and the Atacama. While perchlorate concentrations in the Moroccan samples are typically lower than those found in samples of other analog sites, conditions in the region are sufficiently arid to retain oxychlorines at detectable levels. Our results suggest that the Tindouf Basin in Morocco can serve as a suitable analogue for the soil geochemistry and subsequent aridification of the Noachian epoch on Mars.


Assuntos
Geologia , Marte , Solo/química , Cloretos/análise , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Marrocos , Nitratos/análise , Percloratos/análise
12.
Anal Chem ; 89(9): 4803-4807, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28401761

RESUMO

Solid contact polymeric ion-selective electrodes (SC-ISEs) have been fabricated using microporous carbon (µPC) as the ion-to-electron transducer, loaded with a liquid membrane cocktail containing both ionophore and additive dissolved in plasticizer. These SC-ISEs were characterized and shown to be suitable for analysis in aqueous environments at pressures of 100 bar. Potassium ISEs, prepared in this manner, showed excellent performance at both atmospheric and elevated pressures, as evaluated by their response slopes and potential stability. These novel SC-ISEs were shown to be capable of measuring K+ at pressures under which traditional liquid-filled ISEs fail. Furthermore, the effect of pressure on the response of these sensors had little or no effect on potential, sensitivity, or limit of detection. High pressure sensor calibrations were performed in standard solutions as well as simulated seawater samples to demonstrate their usefulness as sensors in a deep-sea environment. These novel SC-ISE sensors show promise of providing the ability to make in situ real-time measurements of ion-fluxes near deep-ocean geothermal vents.

13.
Geophys Res Lett ; 43(10): 4880-4884, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31423030

RESUMO

Recurring slope lineae (RSL) are flow-like features on Mars characterized by a local darkening of the soil thought to be generated by the formation and flow of liquid brines. One possible mechanism responsible for forming these brines could be the deliquescence of salts present in the Martian soil. We show that the JSC Mars-1a analogue soil undergoes a darkening process when salts dispersed in the soil deliquesce, but forming continuous liquid films and larger droplets takes much longer than previously assumed. Thus, RSL may not necessarily require concurrent flowing liquid water/brine or a salt-recharge mechanism, and their association with gullies may be the result of previously flowing water and deposited salts during an earlier warmer and wetter period. In addition, our results show that electrical conductivity measurements correlate well with the deliquescence rates and provide better overall characterization than either Raman spectroscopy or estimates based on deliquescence relative humidity.

14.
Langmuir ; 30(31): 9599-606, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25019927

RESUMO

The electrochemical behavior of colloidal solutions of graphene oxide (GO) is described here in detail. The GO reduction is shown to exhibit near-reversible electron transfer on Pt electrodes, based on E1/2 and ΔEp values. The observed peak current is found to depend linearly on the concentration of the GO and the square root of the scan rate, suggesting that the response is diffusion-limited. The difference between the experimental and diffusion-only limited theoretical current values suggests that migration may be hindering mass transport to the electrode surface. Varying the type and concentration of the supporting electrolyte showed that mass transport is weakly influenced by the presence of negative charges on the graphene particles. The effect of pH on GO was also investigated, and it was found that the reduction peak heights were directly related to proton concentration in acidic solutions. On the basis of the results presented here, we propose that the observed response of GO on Pt electrodes is a result of the reduction of protons from the colloidal double layer. This difference is observed only because the Pt electrode surface can efficiently catalyze proton reduction.

15.
Anal Chem ; 84(14): 6271-6, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22725848

RESUMO

The search for organics on Mars began over 30 years ago. Neither the Viking GC/MS nor the more recent thermal and evolved gas analyzer (TEGA) aboard Phoenix were successful in detecting organics in the Martian soil. The most recent hypothesis for the "missing" Martian organics is thermal decomposition of organic material to CO(2) during the pyrolysis step of these analyses caused by the recently discovered ~1 wt % perchlorate in the Martian soil. To avoid this problem, an entirely different approach for the analysis of organics on Mars has been developed using an electrochemically based total organic carbon (TOC) analyzer, designated the Mars Organic Carbon Analyzer (MOCA). MOCA is designed as a small, lightweight, low-power instrument that electrochemically oxidizes organics to CO(2). The CO(2) is subsequently detected and quantified to determine the amount of TOC in the soil. MOCA can use the perchlorate present in the Martian soil to its advantage as an electrolyte, thus requiring only a buffered solution. Through a series of proof-of-concept tests, MOCA is shown to oxidize a variety of low-molecular-weight 1-5-carbon-containing molecules, including those containing carbon-13 using platinum and boron-doped diamond (BDD) electrodes at concentrations as low as 10 mg/kg. MOCA can also be used in terrestrial settings for on-site analysis of dissolved TOC.

16.
Anal Chem ; 83(14): 5749-53, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21662988

RESUMO

There is currently a need for a reliable solid-state reference electrode, especially in applications such as autonomous sensing or long-term environmental monitoring. We present here for the first time a novel solid-state nanofiber junction reference electrode (NFJRE) incorporating a junction consisting of poly(methyl methacrylate) and carbon graphene stacked nanofibers. The NFJRE operates by using the membrane polymer junction, which has a very high glass transition temperature (T(g)) and small diffusion coefficient, to control the diffusion of ions, and the carbon nanofibers lower the junction resistance and act as ion-to-electron transducers. The fabrication of the NFJRE is detailed, and its behavior is characterized in terms of its impedance, stability, and behavior in comparison with traditional reference electrodes. The NFJRE showed a response of <5-13 mV toward a variety of electrolyte solutions from 10(-5) to 10(-2) M, <10 mV over a pH range of 2-12, and excellent behavior when used with voltammetric methods.

17.
Environ Sci Technol ; 44(7): 2360-4, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20155929

RESUMO

In the past few years, it has become increasingly apparent that perchlorate (ClO(4)(-)) is present on all continents, except the polar regions where it had not yet been assessed, and that it may have a significant natural source. Here, we report on the discovery of perchlorate in soil and ice from several Antarctic Dry Valleys (ADVs) where concentrations reach up to 1100 microg/kg. In the driest ADV, perchlorate correlates with atmospherically deposited nitrate. Far from anthropogenic activity, ADV perchlorate provides unambiguous evidence that natural perchlorate is ubiquitous on Earth. The discovery has significant implications for the origin of perchlorate, its global biogeochemical interactions, and possible interactions with the polar ice sheets. The results support the hypotheses that perchlorate is produced globally and continuously in the Earth's atmosphere, that it typically accumulates in hyperarid areas, and that it does not build up in oceans or other wet environments most likely because of microbial reduction on a global scale.


Assuntos
Ecossistema , Percloratos/análise , Regiões Antárticas , Cloretos/análise , Gelo , Nitratos/análise , Solo/análise
18.
J Geophys Res ; 108(E7): 13-1 - 13-12, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-14686320

RESUMO

The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.


Assuntos
Técnicas de Química Analítica/instrumentação , Geologia/instrumentação , Marte , Solo/análise , Voo Espacial/instrumentação , Ânions/análise , Calibragem , Cátions/análise , Técnicas de Química Analítica/métodos , Temperatura Baixa , Desenho de Equipamento , Estudos de Avaliação como Assunto , Meio Ambiente Extraterreno , Geologia/métodos , Eletrodos Seletivos de Íons
19.
Chemphyschem ; 4(2): 162-8, 2003 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-12619415

RESUMO

Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and with the correct methodology provide unamibiguous detection of such life forms.


Assuntos
Eletroquímica/métodos , Meio Ambiente Extraterreno/química , Marte , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Eletroquímica/instrumentação , Fenômenos Geológicos , Geologia , Eletrodos Seletivos de Íons , Íons/análise , Técnicas Microbiológicas
20.
Talanta ; 58(1): 23-31, 2002 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-18968731

RESUMO

There are several U.S. EPA approved methodologies for the determination of arsenic in ground water. Such technologies are lab-based, time intensive and can lead to a large capital cost for multi-sample analysis. In light of the number of sites found to contain arsenic at levels higher than the maximum contaminant level (MCL), on-site screening and monitoring systems are an attractive alternative. This review article summarizes several examples in the recent literature to illustrate the breadth of work in voltammetric analysis of arsenic in environmental samples. Also, included are recent voltammetric results, obtained with a microfabricated gold array and a field portable potentiostat, at an arsenic contaminated site in southern New Jersey.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA