Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38665774

RESUMO

Benzimidazole (BZ) anthelmintics are among the most important treatments for parasitic nematode infections in the developing world. Widespread BZ resistance in veterinary parasites and emerging resistance in human parasites raise major concerns for the continued use of BZs. Knowledge of the mechanisms of resistance is necessary to make informed treatment decisions and circumvent resistance. Benzimidazole resistance has traditionally been associated with mutations and natural variants in the C. elegans beta-tubulin gene ben-1 and orthologs in parasitic species. However, variants in ben-1 alone do not explain the differences in BZ responses across parasite populations. Here, we examine the roles of five C. elegans beta-tubulin genes (tbb-1, mec-7, tbb-4, ben-1, and tbb-6) to identify the role each gene plays in BZ response. We generated C. elegans strains with a loss of each beta-tubulin gene, as well as strains with a loss of tbb-1, mec-7, tbb-4, or tbb-6 in a genetic background that also lacks ben-1 to test beta-tubulin redundancy in BZ response. We found that only the individual loss of ben-1 conferred a substantial level of BZ resistance, although the loss of tbb-1 was found to confer a small benefit in the presence of albendazole (ABZ). The loss of ben-1 was found to confer an almost complete rescue of animal development in the presence of 30 µM ABZ, likely explaining why no additive effects caused by the loss of a second beta-tubulin were observed. We demonstrate that ben-1 is the only beta-tubulin gene in C. elegans where loss confers substantial BZ resistance.

2.
Proc Natl Acad Sci U S A ; 120(26): e2221150120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339205

RESUMO

From bacterial quorum sensing to human language, communication is essential for social interactions. Nematodes produce and sense pheromones to communicate among individuals and respond to environmental changes. These signals are encoded by different types and mixtures of ascarosides, whose modular structures further enhance the diversity of this nematode pheromone language. Interspecific and intraspecific differences in this ascaroside pheromone language have been described previously, but the genetic basis and molecular mechanisms underlying the variation remain largely unknown. Here, we analyzed natural variation in the production of 44 ascarosides across 95 wild Caenorhabditis elegans strains using high-performance liquid chromatography coupled to high-resolution mass spectrometry. We discovered wild strains defective in the production of specific subsets of ascarosides (e.g., the aggregation pheromone icas#9) or short- and medium-chain ascarosides, as well as inversely correlated patterns between the production of two major classes of ascarosides. We investigated genetic variants that are significantly associated with the natural differences in the composition of the pheromone bouquet, including rare genetic variants in key enzymes participating in ascaroside biosynthesis, such as the peroxisomal 3-ketoacyl-CoA thiolase, daf-22, and the carboxylesterase cest-3. Genome-wide association mappings revealed genomic loci harboring common variants that affect ascaroside profiles. Our study yields a valuable dataset for investigating the genetic mechanisms underlying the evolution of chemical communication.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Humanos , Caenorhabditis elegans/genética , Feromônios/química , Estudo de Associação Genômica Ampla , Variação Genética
3.
Int J Parasitol Drugs Drug Resist ; 17: 168-175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637983

RESUMO

Infections by parasitic nematodes cause large health and economic burdens worldwide. We use anthelmintic drugs to reduce these infections. However, resistance to anthelmintic drugs is extremely common and increasing worldwide. It is essential to understand the mechanisms of resistance to slow its spread. Recently, four new parasitic nematode beta-tubulin alleles have been identified in benzimidazole (BZ) resistant parasite populations: E198I, E198K, E198T, and E198stop. These alleles have not been tested for the ability to confer resistance or for any effects that they might have on organismal fitness. We introduced these four new alleles into the sensitive C. elegans laboratory-adapted N2 strain and exposed these genome-edited strains to both albendazole and fenbendazole. We found that all four alleles conferred resistance to both BZ drugs. Additionally, we tested for fitness consequences in both control and albendazole conditions over seven generations in competitive fitness assays. We found that none of the edited alleles had deleterious effects on fitness in control conditions and that all four alleles conferred strong and equivalent fitness benefits in BZ drug conditions. Because it is unknown if previously validated alleles confer a dominant or recessive BZ resistance phenotype, we tested the phenotypes caused by five of these alleles and found that none of them conferred a dominant BZ resistance phenotype. Accurate measurements of resistance, fitness effects, and dominance caused by the resistance alleles allow for the generation of better models of population dynamics and facilitate control practices that maximize the efficacy of this critical anthelmintic drug class.


Assuntos
Anti-Helmínticos , Tubulina (Proteína) , Alelos , Animais , Anti-Helmínticos/farmacologia , Benzimidazóis/farmacologia , Caenorhabditis elegans , Resistência a Medicamentos/genética , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA