Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Health Insights ; 18: 11786302241238171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482523

RESUMO

The transportation sector is among the highest contributors to the increase in greenhouse gas emissions in European nations, with private cars emerging as the primary source. Although reducing emissions presents a formidable challenge, the emergence of battery electric vehicles (BEVs) offers a promising and sustainable avenue toward achieving zero greenhouse gases within the transportation infrastructure. Since the 1990s, the Norwegian parliament has fervently supported this transition, leveraging public awareness campaigns and a range of financial incentives for its users nationwide. The widespread utilization of BEVs promises substantial health benefits, including ensuring cleaner air for all citizens regardless of their socioeconomic status and fostering improvements in public health outcomes. This transition potentially curtails hundreds of thousands of annual deaths attributed to climate change, enhances the quality of life, bolsters civilian productivity, and fuels economic and population growth. The adoption of BEVs offers a myriad of advantages, including reduced health risks and premature mortality, as well as a quieter environment with diminished noise pollution. Nonetheless, the integration of BEVs necessitates robust road infrastructure with considerable maintenance costs, alongside limitations on driving range for users. Concerns arise regarding potential particle emissions from BEV tire wear due to the increased weight of batteries compared to conventional vehicles. Rapid acceleration capabilities may accelerate tire degradation, contributing to higher particle emissions, of which only 10% to 20% remain suspended in the air, whereas the majority settles on road surfaces, posing a threat to nearby aquatic ecosystems when washed into water bodies and soils. While BEVs hold promise for valuable benefits, successful policy creation and implementation require a detailed awareness of their limitations and challenges to ensure a comprehensive approach to sustainable mobility and public health improvement. Therefore, more research on the limitations of BEVs can help inform improved tactics for maximizing their benefits while limiting potential disadvantages.


A swift transition to electric vehicles is a good public health intervention that benefits the quality of the air and climate systems. It is expedient to know that this new technology will not solve all problems caused by transportation systems, as there will always be some unwanted and unexpected side effects as usual with new technologies. We suggest more advanced research on EVs shortcomings for better understanding and usage.

2.
Drug Resist Updat ; 73: 101032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198846

RESUMO

Acquired radioresistance is the primary contributor to treatment failure of radiotherapy, with ferroptosis is identified as a significant mechanism underlying cell death during radiotherapy. Although resistance to ferroptosis has been observed in both clinical samples of radioresistant cells and cell models, its mechanism remains unidentified. Herein, our investigation revealed that radioresistant cells exhibited greater tolerance to Glutathione Peroxidase 4 (GPX4) inhibitors and, conversely, increased sensitivity to ferroptosis suppressor protein 1 (FSP1) inhibitors compared to their sensitive counterparts. This observation suggested that FSP1 might play a dominant role in the development of radioresistance. Notably, the knockout of FSP1 demonstrated considerably superior efficacy in resensitizing cells to radiotherapy compared to the knockout of GPX4. To elucidate the driving force behind this functional shift, we conducted a metabolomic assay, which revealed an upregulation of Coenzyme Q (CoQ) synthesis and a downregulation of glutathione synthesis in the acquired radioresistance cells. Mechanistically, CoQ synthesis was found to be supported by aarF domain containing kinase 3-mediated phosphorylation of CoQ synthases, while the downregulation of Solute carrier family 7 member 11 led to decreased glutathione synthesis. Remarkably, our retrospective analysis of clinical response data further validated that the additional administration of statin during radiotherapy, which could impede CoQ production, effectively resensitized radioresistant cells to radiation. In summary, our findings demonstrate a dependency shift from GPX4 to FSP1 driven by altered metabolite synthesis during the acquisition of radioresistance. Moreover, we provide a promising therapeutic strategy for reversing radioresistance by inhibiting the FSP1-CoQ pathway.


Assuntos
Ferroptose , Humanos , Regulação para Cima , Ferroptose/genética , Estudos Retrospectivos , Regulação para Baixo , Glutationa
3.
Bull Natl Res Cent ; 47(1): 87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334163

RESUMO

Background and aims: A new novel virus, Langya virus (LayV), was detected in China in August 2022, 3 years after the COVID-19 pandemic. LayV is similar to the previously discovered Mojiang henipavirus. Other zoonotic henipaviruses include the Hendra and Nipah viruses. The emergence of the zoonotic Langya virus is attributed to climate change and wildlife encroachment, as LayV is detected in shrews. Those who are infected in China showed various symptoms, but no deaths have been recorded yet. This review aims to shed light on the current state of Langya virus outbreak, its infection control efforts, and the remaining challenges that need to be addressed to curb the outbreak. Methods: We utilized online publication databases such as PubMed, Google Scholar, and Scopus in writing this review article. Results: A surveillance study on thirty-five febrile patients in Eastern China identified the Langya virus outbreak. The current efforts from the Chinese government and health authorities to reduce the transmission and spread of Langya virus such as isolation and characterization of LayV, challenges associated with the increase in cases of LayV, and trackable recommendations such as strengthening the healthcare system in China, sensitization of people about risks associated with Langya virus outbreaks, creating an intensive surveillance system network, etc. were discussed. Conclusion: It is germane and pertinent that the Chinese government and health authorities continue to intensify efforts against Langya virus and address the challenges to effectively reduce transmission.

4.
Public Health Chall ; 1(2): e7, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37520894

RESUMO

The COVID-19 outbreak has had a great impact on the social, economic, and health systems of Thailand. A variety of measures to curb the spread of the disease were implemented since the beginning of the pandemic, including a strict national lockdown protocol. The Thai government aimed to achieve herd immunity through an efficient vaccination programme. Initially, vaccine supply shortage and a lack of vaccine options plagued the health system, but this has since been improved. Continuous monitoring of the situation through research is being carried out to assess the level of immunity among the population whereby the current general recommendation is presently a fourth booster dose for adults. Hurdles towards achieving herd immunity remain. One such issue is the low level of vaccine literacy among those that are unvaccinated or inadequately vaccinated. Another obstacle is the sizeable rate of hesitancy towards getting booster doses. Achieving herd immunity in the Thai population would require multilateral cooperation, improved health promotion to target population groups, such as older adults, and a developed distribution system for those with limited access, such as those in the rural areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA