Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 28(3): 650-9, 2008 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18199765

RESUMO

In larval lamprey, hemitransections were performed on the right side of the rostral spinal cord to axotomize ipsilateral reticulospinal (RS) neurons. First, at short recovery times (2-3 weeks), uninjured RS neurons contralateral to hemitransections fired a smooth train of action potentials in response to sustained depolarization, whereas axotomized neurons fired a single short burst or short repetitive bursts. For uninjured RS neurons, the afterpotentials of action potentials had three components: fast afterhyperpolarization (fAHP), afterdepolarizing potential (ADP), and slow AHP (sAHP) that was attributable to calcium influx via high-voltage-activated (HVA) (N- and P/Q-type) calcium channels and calcium-activated potassium channels (SKKCa). For axotomized RS neurons, the fAHP was significantly larger than for uninjured neurons, and the ADP and sAHP were absent or significantly reduced. Second, at relatively long recovery times (12-16 weeks), axotomized RS neurons displayed firing patterns and afterpotentials that were similar to those of uninjured neurons. Third, mRNA levels of lamprey HVA calcium and SKKCa channels in axotomized RS neurons were significantly reduced at short recovery times and restored at long recovery times. Fourth, blocking calcium channels in uninjured RS neurons resulted in altered firing patterns that resembled those produced by axotomy. We demonstrated previously that lamprey RS neurons in culture extend neurites, and calcium influx results in inhibition of neurite outgrowth or retraction. Together, these results suggest that the downregulation of Ca2+ channels in axotomized RS neurons, and the associated reduction in calcium influx, maintain intracellular calcium levels in a range that is permissive for axonal regeneration.


Assuntos
Canais Iônicos/metabolismo , Neurônios/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Apamina/farmacologia , Axotomia/métodos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Estimulação Elétrica/métodos , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Canais Iônicos/genética , Larva , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Petromyzon , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Fatores de Tempo , ômega-Conotoxinas/farmacologia
2.
J Proteome Res ; 5(9): 2417-23, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16944954

RESUMO

The process of cell motility involves coordinate signaling events among proteins associated in interactive integrin-linked networks. Mass spectrometric analysis of immunoprecipitation-derived protein mixtures have provided efficient means of identifying proteomes. In this study, we investigate strategies to enhance the detection of interactome proteins for the known signaling module: PAK1, betaPIX, GIT1, and paxillin. Our results indicate that near-endogenous expression levels of bait protein enhances the identification of associated proteins, and that phosphatase inhibition augments the detection of specific protein interactions. Following the analysis of a large pool of spectral data, we have identified and mapped clusters of proteins that either share common interactions among the four bait proteins of interest or are exclusive to single bait proteins. Taken together, these data indicate that biochemical manipulations can enhance the ability for LC-MS/MS to identify interactome proteins, and that qualitative screening of multiple samples leads to the compilation of proteins associated with a known plexus.


Assuntos
Movimento Celular/genética , Proteínas/análise , Proteômica/métodos , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatografia Líquida/métodos , Humanos , Imunoprecipitação , Espectrometria de Massas/métodos , Paxilina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Ativadas por p21
4.
Biochem Biophys Res Commun ; 346(4): 1284-8, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16797488

RESUMO

G protein-coupled receptor kinase-interacting protein (GIT)1 is a multidomain, adaptor protein that regulates cellular processes, such as migration and protrusive activity, by bringing together various signaling molecules, including PIX, PAK, and paxillin. Mutants of GIT1, which lack the C-terminal paxillin binding domain, fail to mediate its effects on migration and protrusions, suggesting that sites within this domain are critical to GIT1 function. In this study, we show that serine 709, which is located within the paxillin binding domain, regulates GIT1 function. Phosphorylation of serine 709 is necessary for GIT1-induced effects on protrusions. Phosphorylation of this site also regulates GIT1 interaction with paxillin, which could serve to target GIT1 to the leading edge of cells. As shown by an in vitro kinase assay, PAK phosphorylates GIT1 on serine 709. Taken together, our results indicate that GIT1 phosphorylation on serine 709 increases its binding to paxillin and regulates protrusive activity in cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/fisiologia , Extensões da Superfície Celular/fisiologia , Serina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Células CHO , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Cricetinae , Humanos , Paxilina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Ativadas por p21
5.
J Cell Sci ; 115(Pt 7): 1497-510, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11896197

RESUMO

GIT1 is a multidomain protein that is thought to function as an integrator of signaling pathways controlling vesicle trafficking, adhesion and cytoskeletal organization. It regulates ARF GTPases and has binding domains for paxillin and PIX, which is a PAK-binding protein and an exchange factor for Rac. We show that GIT1 cycles between at least three distinct subcellular compartments, including adhesion-like structures, the leading edge and cytoplasmic complexes. The cytoplasmic structures, which also contain paxillin, PAK and PIX, do not detectably co-localize with endosomal Golgi or membrane markers, suggesting that they represent a novel supramolecular complex. The GIT1 cytoplasmic complexes are motile and tended to move toward the cell periphery where they joined existing adhesions. In retracting regions of the cells, the GIT1 complexes moved away from the disassembling adhesions toward the cell body. Using deletion mutants, we have identified domains that target GIT1 to each of the compartments. Localization to adhesions and the leading edge requires the paxillin-binding domain, which comprises the C-terminal 140 residues (cGIT1), whereas targeting to the cytoplasmic complexes requires the central region that contains ankyrin repeats and the PIX-binding domain. Expression of GIT1 or cGIT, but not nGIT1 in which the paxillin-binding domain is deleted, increases the rate of migration and the size and number of protrusions. The latter are inhibited when GIT1 is co-expressed with a kinase-dead PAK, suggesting that the GIT1 interaction with PAK is required for enhanced migration and protrusive activity. Furthermore, GIT1 targets constitutively activated PAK to adhesions and the leading edge via its interaction with paxillin. Since expression of cGIT targets endogenous GIT1 to the leading edge, it appears that the leading edge is the location of GIT1 responsible for these activities. Thus, GIT1 is a component of a motile, multimolecular complex that traffics a set of signaling components to specific locations in the cell where they regulate localized activities.


Assuntos
Movimento Celular , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Transdução de Sinais , Animais , Células CHO , Adesão Celular , Compartimento Celular , Linhagem Celular , Extensões da Superfície Celular/metabolismo , Cricetinae , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Substâncias Macromoleculares , Transporte Proteico , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA