Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(15): e202400270, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38302694

RESUMO

Current transition alumina catalysts require the presence of significant amounts of toxic, environmentally deleterious dopants for their stabilization. Herein, we report a simple and novel strategy to engineer transition aluminas to withstand aging temperatures up to 1200 °C without inducing the transformation to low-surface-area α-Al2O3 and without requiring dopants. By judiciously optimizing the abundance of dominant facets and the interparticle distance, we can control the temperature of the phase transformation from θ-Al2O3 to α-Al2O3 and the specific surface sites on the latter. These specific surface sites provide favorable interactions with supported metal catalysts, leading to improved metal dispersion and greatly enhanced catalytic activity for hydrocarbon oxidation. The results presented herein not only provide molecular-level insights into the critical factors causing deactivation and phase transformation of aluminas but also pave the way for the development of catalysts with improved activity for catalytic hydrocarbon oxidation.

2.
Anal Chem ; 96(8): 3373-3381, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38345945

RESUMO

While conventional ion-soft landing uses the mass-to-charge (m/z) ratio to achieve molecular selection for deposition, here we demonstrate the use of Structures for Lossless Ion Manipulation (SLIM) for mobility-based ion selection and deposition. The dynamic rerouting capabilities of SLIM were leveraged to enable the rerouting of a selected range of mobilities to a different SLIM path (rather than MS) that terminated at a deposition surface. A selected mobility range from a phosphazene ion mixture was rerouted and deposited with a current pulse (∼150 pA) resembling its mobility peak. In addition, from a mixture of tetra-alkyl ammonium (TAA) ions containing chain lengths of C5-C8, selected chains (C6, C7) were collected on a surface, reconstituted into solution-phase, and subsequently analyzed with a SLIM-qToF to obtain an IMS/MS spectrum, confirming the identity of the selected species. Further, this method was used to characterize triply charged tungsten-polyoxometalate anions, PW12O403- (WPOM). The arrival time distribution of the IMS/MS showed multiple peaks associated with the triply charged anion (PW12O403-), of which a selected ATD was deposited and imaged using TEM. Additionally, the identity of the deposited WPOM was ascertained using energy-dispersive (EDS) spectroscopy. Further, we present theory and computations that reveal ion landing energies, the ability to modulate the energies, and deposition spot sizes.

3.
Environ Sci Technol ; 57(44): 16834-16842, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37856673

RESUMO

Tar balls are brown carbonaceous particles that are highly viscous, spherical, amorphous, and light absorbing. They are believed to form in biomass burning smoke plumes during transport in the troposphere. Tar balls are also believed to have a significant impact on the Earth's radiative balance, but due to poorly characterized optical properties, this impact is highly uncertain. Here, we used two nighttime samples to investigate the chemical composition and optical properties of individual tar balls transported in the free troposphere to the Climate Observatory "Ottavio Vittori" on Mt. Cimone, Italy, using multimodal microspectroscopy. In our two samples, tar balls contributed 50% of carbonaceous particles by number. Of those tar balls, 16% were inhomogeneously mixed with other constituents. Using electron energy loss spectroscopy, we retrieved the complex refractive index (RI) for a wavelength range from 200 to 1200 nm for both inhomogeneously and homogeneously mixed tar balls. We found no significant difference in the average RI of inhomogeneously and homogeneously mixed tar balls (1.40-0.03i and 1.36-0.03i at 550 nm, respectively). Furthermore, we estimated the top of the atmosphere radiative forcing using the Santa Barbara DISORT Atmospheric Radiative Transfer model and found that a layer of only tar balls with an optical depth of 0.1 above vegetation would exert a positive radiative forcing ranging from 2.8 W m-2 (on a clear sky day) to 9.5 W m-2 (when clouds are below the aerosol layer). Understanding the optical properties of tar balls can help reduce uncertainties associated with the contribution of biomass-burning aerosol in current climate models.


Assuntos
Poluentes Atmosféricos , Clima , Atmosfera/química , Aerossóis/análise , Itália , Poluentes Atmosféricos/análise
4.
Microsc Microanal ; 29(4): 1467-1473, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488814

RESUMO

Focused ion beam (FIB) is frequently used to prepare electron- and X-ray-beam-transparent thin sections of samples, called lamellae. Typically, lamellae are prepared from only a subregion of a sample. In this paper, we present a novel approach for FIB lamella preparation of microscopic samples, wherein the entire cross-section of the whole sample can be investigated. The approach was demonstrated using spherical, porous, and often hollow microprecipitates of biologically precipitated calcium carbonate. The microprecipitate morphology made these biogenic samples more fragile and challenging than materials commonly investigated using FIB lamellae. Our method enables the appropriate orientation of the lamellae required for further electron/X-ray analyses after attachment to the transmission electron microscopy (TEM) grid post and facilitates more secure adhesion onto the grid post. We present evidence of autofluorescence in bacterially precipitated vaterite using this lamella preparation method coupled with TEM selected area diffraction. This innovative approach allows studying biomineralization at the micro to nano scales, which can provide novel insights into bacterial responses to microenvironmental conditions.

5.
J Am Chem Soc ; 145(19): 10847-10860, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145876

RESUMO

Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, ∼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, ∼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.

6.
Water Res ; 238: 119990, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37146398

RESUMO

Fe-rich mobile colloids play vital yet poorly understood roles in the biogeochemical cycling of Fe in groundwater by influencing organic matter (OM) preservation and fluxes of Fe, OM, and other essential (micro-)nutrients. Yet, few studies have provided molecular detail on the structures and compositions of Fe-rich mobile colloids and factors controlling their persistence in natural groundwater. Here, we provide comprehensive new information on the sizes, molecular structures, and compositions of Fe-rich mobile colloids that accounted for up to 72% of aqueous Fe in anoxic groundwater from a redox-active floodplain. The mobile colloids are multi-phase assemblages consisting of Si-coated ferrihydrite nanoparticles and Fe(II)-OM complexes. Ferrihydrite nanoparticles persisted under both oxic and anoxic conditions, which we attribute to passivation by Si and OM. These findings suggest that mobile Fe-rich colloids generated in floodplains can persist during transport through redox-variable soils and could be discharged to surface waters. These results shed new light on their potential to transport Fe, OM, and nutrients across terrestrial-aquatic interfaces.


Assuntos
Água Subterrânea , Ferro , Ferro/química , Compostos Férricos , Solo , Coloides/química , Água Subterrânea/química , Oxirredução , Minerais/química
7.
Proc Natl Acad Sci U S A ; 120(23): e2101243120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252978

RESUMO

Iron-based redox-active minerals are ubiquitous in soils, sediments, and aquatic systems. Their dissolution is of great importance for microbial impacts on carbon cycling and the biogeochemistry of the lithosphere and hydrosphere. Despite its widespread significance and extensive prior study, the atomic-to-nanoscale mechanisms of dissolution remain poorly understood, particularly the interplay between acidic and reductive processes. Here, we use in situ liquid-phase-transmission electron microscopy (LP-TEM) and simulations of radiolysis to probe and control acidic versus reductive dissolution of akaganeite (ß-FeOOH) nanorods. Informed by crystal structure and surface chemistry, the balance between acidic dissolution at rod tips and reductive dissolution at rod sides was systematically varied using pH buffers, background chloride anions, and electron beam dose. We find that buffers, such as bis-tris, effectively inhibited dissolution by consuming radiolytic acidic and reducing species such as superoxides and aqueous electrons. In contrast, chloride anions simultaneously suppressed dissolution at rod tips by stabilizing structural elements while promoting dissolution at rod sides through surface complexation. Dissolution behaviors were systematically varied by shifting the balance between acidic and reductive attacks. The findings show LP-TEM combined with simulations of radiolysis effects can provide a unique and versatile platform for quantitatively investigating dissolution mechanisms, with implications for understanding metal cycling in natural environments and the development of tailored nanomaterials.

8.
Nat Commun ; 14(1): 1346, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906649

RESUMO

Direct ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials' physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts. Herein, we propose a Pd/Co@N-C catalyst that can be used as a model system to study the synergism and engineering at the solid-solid interface. Particularly, the transformation of amorphous carbon to highly graphitic carbon promoted by cobalt nanoparticles helps achieve the spatial confinement effect, which prevents structural degradation of the catalysts. The strong catalyst-support and electronic effects at the interface between palladium and Co@N-C endow the electron-deficient state of palladium, which enhances the electron transfer and improved activity/durability. The Pd/Co@N-C delivers a maximum power density of 438 mW cm-2 in direct ethanol fuel cells and can be operated stably for more than 1000 hours. This work presents a strategy for the ingenious catalyst structural design that will promote the development of fuel cells and other sustainable energy-related technologies.

9.
Environ Sci Process Impacts ; 25(3): 577-593, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36727412

RESUMO

This study investigates the sequestration and transformation of silver (Ag) and arsenic (As) ions in soil organic matter (OM) at the nanoscale using the combination of atom probe tomography (APT), transmission electron microscopy (TEM), focused ion beam (FIB), ion mill thinning and scanning electron microscopy (SEM). Silver-arsenic contaminated organic-rich soils were collected along the shore of Cobalt Lake, a former mining and milling site of the famous Ag deposits at Cobalt, Ontario, Canada. SEM examinations show that particulate organic matter (OM grains) contains mineral inclusions composed of mainly Fe, S, and Si with minor As and traces of Ag. Four OM grains with detectable concentrations of Ag (by SEM-EDS) were further characterized with either a combination of TEM and APT or TEM alone. These examinations show that As is predominantly sequestered by OM through either co-precipitation with Fe-(hydr)oxide inclusions or adsorption on Fe-(hydr)oxides and their subsequent transformation into scorodite (FeAsO4·2H2O)/amorphous Fe-arsenate (AFA). Silver nanoparticles (NPs) with diameters in the range of ∼5-20 nm occur in the organic matrix as well as on the surface of Fe-rich inclusions (Fe-hydroxides, Fe-arsenates, Fe-sulfides), whereas Ag sulfide NPs were only observed on the surfaces of the Fe-rich inclusions. Rims of Ag-sulfides on Ag NPs (TEM data), accumulation of S atoms within and around Ag NPs (APT data), and the occurrence of dendritic as well as euhedral acanthite NPs with diameters in the range of ∼100-400 nm (TEM data) indicate that the sulfidation of the Ag NPs occurred via a mineral-replacement reaction (rims) or a complete dissolution of the Ag NPs, the subsequent precipitation of acanthite NPs and their aggregation (dendrites) and Ostwald ripening (euhedral crystals). These results show the importance of OM and, specifically the mineral inclusions in the sequestration of Ag and As to less bioavailable forms such as acanthite and scorodite, respectively.


Assuntos
Arsênio , Nanopartículas Metálicas , Prata/análise , Solo/química , Microscopia Eletrônica de Transmissão , Óxidos , Sulfetos/química
10.
J Am Chem Soc ; 145(9): 5029-5040, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812067

RESUMO

Atom trapping leads to catalysts with atomically dispersed Ru1O5 sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 is stable during continuous cycling, ramping, and cooling as well as the presence of moisture. Furthermore, Ru1/CeO2 shows very high NOx storage properties due to formation of stable Ru-NO complexes as well as a high spill-over rate of NOx onto CeO2. Only ∼0.05 wt % of Ru is required for excellent NOx storage. Ru1O5 sites exhibit much higher stability during calcination in air/steam up to 750 °C in contrast to RuO2 nanoparticles. We clarify the location of Ru(II) ions on the ceria surface and experimentally identify the mechanism of NO storage and oxidation using DFT calculations and in situ DRIFTS/mass spectroscopy. Moreover, we show excellent reactivity of Ru1/CeO2 for NO reduction by CO at low temperatures: only 0.1-0.5 wt % of Ru is sufficient to achieve high activity. Modulation-excitation in situ infrared and XPS measurements reveal the individual elementary steps of NO reduction by CO on an atomically dispersed Ru ceria catalyst, highlighting unique properties of Ru1/CeO2 and its propensity to form oxygen vacancies/Ce+3 sites that are critical for NO reduction, even at low Ru loadings. Our study highlights the applicability of novel ceria-based single-atom catalysts to NO and CO abatement.

11.
Nat Commun ; 13(1): 6394, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302906

RESUMO

Sudden blockage of arteries supplying the heart muscle contributes to millions of heart attacks (myocardial infarction, MI) around the world. Although re-opening these arteries (reperfusion) saves MI patients from immediate death, approximately 50% of these patients go on to develop chronic heart failure (CHF) and die within a 5-year period; however, why some patients accelerate towards CHF while others do not remains unclear. Here we show, using large animal models of reperfused MI, that intramyocardial hemorrhage - the most damaging form of reperfusion injury (evident in nearly 40% of reperfused ST-elevation MI patients) - drives delayed infarct healing and is centrally responsible for continuous fatty degeneration of the infarcted myocardium contributing to adverse remodeling of the heart. Specifically, we show that the fatty degeneration of the hemorrhagic MI zone stems from iron-induced macrophage activation, lipid peroxidation, foam cell formation, ceroid production, foam cell apoptosis and iron recycling. We also demonstrate that timely reduction of iron within the hemorrhagic MI zone reduces fatty infiltration and directs the heart towards favorable remodeling. Collectively, our findings elucidate why some, but not all, MIs are destined to CHF and help define a potential therapeutic strategy to mitigate post-MI CHF independent of MI size.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Miocárdio , Infarto do Miocárdio/complicações , Infarto do Miocárdio/terapia , Hemorragia , Coração , Insuficiência Cardíaca/etiologia , Ferro , Remodelação Ventricular , Modelos Animais de Doenças
12.
Sci Rep ; 12(1): 16267, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171204

RESUMO

In computed TEM tomography, image segmentation represents one of the most basic tasks with implications not only for 3D volume visualization, but more importantly for quantitative 3D analysis. In case of large and complex 3D data sets, segmentation can be an extremely difficult and laborious task, and thus has been one of the biggest hurdles for comprehensive 3D analysis. Heterogeneous catalysts have complex surface and bulk structures, and often sparse distribution of catalytic particles with relatively poor intrinsic contrast, which possess a unique challenge for image segmentation, including the current state-of-the-art deep learning methods. To tackle this problem, we apply a deep learning-based approach for the multi-class semantic segmentation of a γ-Alumina/Pt catalytic material in a class imbalance situation. Specifically, we used the weighted focal loss as a loss function and attached it to the U-Net's fully convolutional network architecture. We assessed the accuracy of our results using Dice similarity coefficient (DSC), recall, precision, and Hausdorff distance (HD) metrics on the overlap between the ground-truth and predicted segmentations. Our adopted U-Net model with the weighted focal loss function achieved an average DSC score of 0.96 ± 0.003 in the γ-Alumina support material and 0.84 ± 0.03 in the Pt NPs segmentation tasks. We report an average boundary-overlap error of less than 2 nm at the 90th percentile of HD for γ-Alumina and Pt NPs segmentations. The complex surface morphology of γ-Alumina and its relation to the Pt NPs were visualized in 3D by the deep learning-assisted automatic segmentation of a large data set of high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) tomography reconstructions.

13.
Environ Sci Process Impacts ; 24(8): 1228-1242, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35838027

RESUMO

The large surface areas in porous organic matter (OM) and on the surface of altered minerals control the sequestration of metal(loid)s in contaminated soils and sediments. This study explores the sequestration of Cu by OM in surficial forest soil in close proximity to the Horne smelter, Rouyn-Noranda, Quebec, Canada. The organic-rich soils have elevated concentrations of Cu (Cu = 〈0.75〉 wt%) but lack associations between organic matter (OM) and Cu-sulfides, commonly observed in organic-rich Cu-contaminated soils. This provides a unique opportunity to study the sequestration of Cu by OM in a sulfur-depleted environment using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT). In two examined OM particles, Cu is predominantly sequestered as (I) nano- to micrometer-size Cu-bearing spinels, (II) as cuprite (Cu2O) nanoparticles or (III) finely dispersed Cu in association with clusters of magnetite (Fe3O4) nanoparticles embedded in amorphous silica-rich pockets and (IV) in the OM matrix. The occurrence of euhedral crystals and nanoparticles in the single-digit range within the OM matrix indicate that the majority of the nanoparticles formed in situ within the OM particles. A model is developed which proposes that the sequestration of Cu in OM is promoted by (I) the partial mineralization of the OM matrix by amorphous silica; (II) the nucleation of magnetite nanoparticles on highly reactive silanol groups; (III) the diffusion of Cu within mineralized and altered areas of the OM; (IV) the availability of Cu-bearing species, which in turn is controlled by the hydrodynamic properties of the pore channels; (V) the formation of precursors and nucleation of Cu-bearing nanoparticles. This study shows that the combination of SEM, TEM and APT provides new insights into the sequestration of metal contaminants by OM at various scales ranging from the single-digit nano- to micrometer scale.


Assuntos
Cobre/análise , Poluentes do Solo , Solo , Metais , Microscopia Eletrônica de Transmissão , Dióxido de Silício , Solo/química , Poluentes do Solo/análise , Tomografia
14.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408748

RESUMO

Steamed zeolites exhibit improved catalytic properties for hydrocarbon activation (alkane cracking and dehydrogenation). The nature of this practically important phenomenon has remained a mystery for the last six decades and was suggested to be related to the increased strength of zeolitic Bronsted acid sites after dealumination. We now utilize state-of-the-art infrared spectroscopy measurements and prove that during steaming, aluminum oxide clusters evolve (due to hydrolysis of Al out of framework positions with the following clustering) in the zeolitic micropores with properties very similar to (nano) facets of hydroxylated transition alumina surfaces. The Bronsted acidity of the zeolite does not increase and the total number of Bronsted acid sites decreases during steaming. O5Al(VI)-OH surface sites of alumina clusters dehydroxylate at elevated temperatures to form penta-coordinate Al1O5 sites that are capable of initiating alkane cracking by breaking the first C-H bond very effectively with much lower barriers (at lower temperatures) than for protolytic C-H bond activation, with the following reaction steps catalyzed by nearby zeolitic Bronsted acid sites. This explains the underlying mechanism behind the improved alkane cracking and alkane dehydrogenation activity of steamed zeolites: heterolytic C-H bond breaking occurs on Al-O sites of aluminum oxide clusters confined in zeolitic pores. Our findings explain the origin of enhanced activity of steamed zeolites at the molecular level and provide the missing understanding of the nature of extra-framework Al species formed in steamed/dealuminated zeolites.

15.
Sci Rep ; 12(1): 3407, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232970

RESUMO

Nutrient foraging by fungi weathers rocks by mechanical and biochemical processes. Distinguishing fungal-driven transformation from abiotic mechanisms in soil remains a challenge due to complexities within natural field environments. We examined the role of fungal hyphae in the incipient weathering of granulated basalt from a three-year field experiment in a mixed hardwood-pine forest (S. Carolina) to identify alteration at the nanometer to micron scales based on microscopy-tomography analyses. Investigations of fungal-grain contacts revealed (i) a hypha-biofilm-basaltic glass interface coinciding with titanomagnetite inclusions exposed on the grain surface and embedded in the glass matrix and (ii) native dendritic and subhedral titanomagnetite inclusions in the upper 1-2 µm of the grain surface that spanned the length of the fungal-grain interface. We provide evidence of submicron basaltic glass dissolution occurring at a fungal-grain contact in a soil field setting. An example of how fungal-mediated weathering can be distinguished from abiotic mechanisms in the field was demonstrated by observing hyphal selective occupation and hydrolysis of glass-titanomagnetite surfaces. We hypothesize that the fungi were drawn to basaltic glass-titanomagnetite boundaries given that titanomagnetite exposed on or very near grain surfaces represents a source of iron to microbes. Furthermore, glass is energetically favorable to weathering in the presence of titanomagnetite. Our observations demonstrate that fungi interact with and transform basaltic substrates over a three-year time scale in field environments, which is central to understanding the rates and pathways of biogeochemical reactions related to nuclear waste disposal, geologic carbon storage, nutrient cycling, cultural artifact preservation, and soil-formation processes.


Assuntos
Hifas , Silicatos , Florestas , Hifas/metabolismo , Silicatos/metabolismo , Solo
16.
Environ Sci Technol ; 56(4): 2398-2406, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119274

RESUMO

Biodegradable plastics can reach full degradation when disposed of appropriately and thus alleviate plastic pollution caused by conventional plastics. However, additives can be released into the environment during degradation and the fate of these additives can be affected by the degradation process. Here, we characterized TiO2 particles released from a biodegradable plastic mulch during composting and studied the transport of the mulch-released TiO2 particles in inert sand and agricultural soil columns under unsaturated flow conditions. TiO2 particles (238 nm major axis and 154 nm minor axis) were released from the biodegradable plastic mulch in both single-particle and cluster forms. The mulch-released TiO2 particles were fully retained in unsaturated soil columns due to attachment onto the solid-water interface and straining. However, in unsaturated sand columns, the mulch-released TiO2 particles were highly mobile. A comparison with the pristine TiO2 revealed that the mobility of the mulch-released TiO2 particles was enhanced by humic acid present in the compost residues, which blocked attachment sites and imposed steric repulsion. This study demonstrates that TiO2 particles can be released during composting of biodegradable plastics and the transport potential of the plastic-released TiO2 particles in the terrestrial environment can be enhanced by compost residues.


Assuntos
Plásticos Biodegradáveis , Compostagem , Plásticos , Areia , Solo , Titânio
17.
Angew Chem Int Ed Engl ; 61(3): e202107554, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34617372

RESUMO

Pd-loaded FER and SSZ-13 zeolites as low-temperature passive NOx adsorbers (PNA) are compared under practical conditions. Vehicle cold start exposes the material to CO under a range of concentrations, necessitating a systematic exploration of the effect of CO on the performance of isolated Pd ions in PNA. The NO release temperature of both adsorbers decreases gradually with an increase in CO concentration from a few hundred to a few thousand ppm. This beneficial effect results from local nano-"hot spot" formation during CO oxidation. Dissimilar to Pd/SSZ-13, increasing the CO concentration above ≈1000 ppm improves the NOx storage significantly for Pd/FER, which was attributed to the presence of Pd ions in FER sites that are shielded from NOx. CO mobilizes this Pd atom to the NOx accessible position where it becomes active for PNA. This behavior explains the very high resistance of Pd/FER to hydrothermal aging: Pd/FER materials survive hydrothermal aging at 800 °C in 10 % H2 O vapor for 16 hours with no deterioration in NOx uptake/release behavior. Thus, by allocating Pd ions to the specific microporous pockets in FER, we have produced (hydro)thermally stable and active PNA materials.

18.
J Hazard Mater ; 426: 127844, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838363

RESUMO

Cerium is a critical element to modern technologies. Nowadays, its increased applications have led to elevated levels in the environment. Cerium recovery by microorganisms has gained a great deal of attention. Here, our research showed that Bacillus licheniformis could be used to recover Ce3+ from aqueous solution. The adsorption capacity of cerium on this bacterial strain achieved 38.93 mg/g (dry weight) biomass. Adsorption kinetics followed a pseudo-second-order rate model, and adsorption isotherm was fitted well with the Freundlich model. Scanning electron microscope (SEM) observations coupled with X-ray energy dispersive spectroscopy (EDS) analysis revealed a spatial association of Ce with C, N, O, S, and P. Fourier transform infrared spectroscopy (FT-IR) analysis further suggested that the phosphate and carboxyl groups on the cell surface might be responsible for the adsorption of cerium. Furthermore, X-ray diffraction (XRD) and transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) suggested that cerium initially occurred on the bacterial cell surface as Ce(OH)3, which was mainly converted to monazite (CePO4) and a small amount of CeO2 overtime. Hydrothermal treatment was used to accelerate the mineralization process of cerium by B. licheniformis. The hydrothermal treatment is conducted for comparative analysis of mineralization process in extreme geological condition.


Assuntos
Bacillus licheniformis , Cério , Poluentes Químicos da Água , Adsorção , Biomineralização , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
19.
Nat Commun ; 12(1): 6033, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654809

RESUMO

CO oxidation is of importance both for inorganic and living systems. Transition and precious metals supported on various materials can oxidize CO to CO2. Among them, few systems, such as Au/TiO2, can perform CO oxidation at temperatures as low as -70 °C. Living (an)aerobic organisms perform CO oxidation with nitrate using complex enzymes under ambient temperatures representing an essential pathway for life, which enables respiration in the absence of oxygen and leads to carbonate mineral formation. Herein, we report that CO can be oxidized to CO2 by nitrate at -140 °C within an inorganic, nonmetallic zeolitic system. The transformation of NOx and CO species in zeolite as well as the origin of this unique activity is clarified using a joint spectroscopic and computational approach.

20.
JACS Au ; 1(4): 396-408, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467303

RESUMO

Industrial low-temperature methane combustion catalyst Pd/Al2O3 suffers from H2O-induced deactivation. It is imperative to design Pd catalysts free from this deactivation and with high atomic efficiency. Using a small-pore zeolite SSZ-13 as support, herein we report well-defined Pd catalysts with dominant active species as finely dispersed Pd cations, uniform PdO particles embedded inside the zeolite framework, or PdO particles decorating the zeolite external surface. Through detailed reaction kinetics and spectroscopic and microscopic studies, we show that finely dispersed sites are much less active than PdO nanoparticles. We further demonstrate that H2O-induced deactivation can be readily circumvented by using zeolite supports with high Si/Al ratios. Finally, we provide a few rational catalyst design suggestions for methane oxidation based on the new knowledge learned in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA