Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioengineering (Basel) ; 10(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36829682

RESUMO

In recent years, the treatment of aortic stenosis with TAVR has rapidly expanded to younger and lower-risk patients. However, persistent thrombotic events such as stroke and valve thrombosis expose recipients to severe clinical complications that hamper TAVR's rapid advance. We presented a novel methodology for establishing a link between commonly acceptable mild paravalvular leak (PVL) levels through the device and increased thrombogenic risk. It utilizes in vitro patient-specific TAVR 3D-printed replicas evaluated for hydrodynamic performance. High-resolution µCT scans are used to reconstruct in silico FSI models of these replicas, in which multiple platelet trajectories are studied through the PVL channels to quantify thrombogenicity, showing that those are highly dependent on patient-specific flow conditions within the PVL channels. It demonstrates that platelets have the potential to enter the PVL channels multiple times over successive cardiac cycles, increasing the thrombogenic risk. This cannot be reliably approximated by standard hemodynamic parameters. It highlights the shortcomings of subjectively ranked PVL commonly used in clinical practice by indicating an increased thrombogenic risk in patient cases otherwise classified as mild PVL. It reiterates the need for more rigorous clinical evaluation for properly diagnosing thrombogenic risk in TAVR patients.

2.
Ann Biomed Eng ; 51(1): 58-70, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36042099

RESUMO

Bicuspid aortic valve (BAV), the most common congenital heart malformation, is characterized by the presence of only two valve leaflets with asymmetrical geometry, resulting in elliptical systolic opening. BAV often leads to early onset of calcific aortic stenosis (AS). Following the rapid expansion of transcatheter aortic valve replacement (TAVR), designed specifically for treating conventional tricuspid AS, BAV patients with AS were initially treated "off-label" with TAVR, which recently gained FDA and CE regulatory approval. Despite its increasing use in BAV, pathological BAV anatomy often leads to complications stemming from mismatched anatomical features. To mitigate these complications, a novel eccentric polymeric TAVR valve incorporating asymmetrical leaflets was designed specifically for BAV anatomies. Computational modeling was used to optimize its asymmetric leaflets for lower functional stresses and improved hemodynamic performance. Deployment and flow were simulated in patient-specific BAV models (n = 6) and compared to a current commercial TAVR valve (Evolut R 29 mm), to assess deployment and flow parameters. The novel eccentric BAV-dedicated valve demonstrated significant improvements in peak systolic orifice area, along with lower jet velocity and wall shear stress (WSS). This feasibility study demonstrates the clinical potential of the first known BAV-dedicated TAVR design, which will foster advancement of patient-dedicated valvular devices.


Assuntos
Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Substituição da Valva Aórtica Transcateter , Humanos , Valva Aórtica , Doenças das Valvas Cardíacas/cirurgia , Modelagem Computacional Específica para o Paciente , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento
3.
Cardiovasc Eng Technol ; 13(6): 840-856, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35391657

RESUMO

INTRODUCTION: Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, which had been treated off-label by transcatheter aortic valve replacement (TAVR) procedure for several years, until its recent approval by the Food and Drug Administration (FDA) and Conformité Européenne (CE) to treat BAVs. Post-TAVR complications tend to get exacerbated in BAV patients due to their inherent aortic root pathologies. Globally, due to the paucity of randomized clinical trials, clinicians still favor surgical AVR as the primary treatment option for BAV patients. While this warrants longer term studies of TAVR outcomes in BAV patient cohorts, in vitro experiments and in silico computational modeling can be used to guide the surgical community in assessing the feasibility of TAVR in BAV patients. Our goal is to combine these techniques in order to create a modeling framework for optimizing pre-procedural planning and minimize post-procedural complications. MATERIALS AND METHODS: Patient-specific in silico models and 3D printed replicas of 3 BAV patients with different degrees of post-TAVR paravalvular leakage (PVL) were created. Patient-specific TAVR device deployment was modeled in silico and in vitro-following the clinical procedures performed in these patients. Computational fluid dynamics simulations and in vitro flow studies were performed in order to obtain the degrees of PVL in these models. RESULTS: PVL degree and locations were consistent with the clinical data. Cross-validation comparing the stent deformation and the flow parameters between the in silico and the in vitro models demonstrated good agreement. CONCLUSION: The current framework illustrates the potential of using simulations and 3D printed models for pre-TAVR planning and assessing post-TAVR complications in BAV patients.


Assuntos
Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Substituição da Valva Aórtica Transcateter , Humanos , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Simulação por Computador , Hidrodinâmica , Estenose da Valva Aórtica/cirurgia , Resultado do Tratamento
4.
J Cardiovasc Transl Res ; 15(4): 834-844, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34859367

RESUMO

Bicuspid aortic valve (BAV), the most common congenital valvular abnormality, generates asymmetric flow patterns and increased stresses on the leaflets that expedite valvular calcification and structural degeneration. Recently adapted for use in BAV patients, TAVR demonstrates promising performance, but post-TAVR complications tend to get exacerbated due to BAV anatomical complexities. Utilizing patient-specific computational modeling, we address some of these complications. The degree and location of post-TAVR PVL was assessed, and the risk of flow-induced thrombogenicity was analyzed in 3 BAV patients - using older generation TAVR devices that were implanted in these patients, and compared them to the performance of the newest generation TAVR devices using in silico patient models. Significant decrease in PVL and thrombogenic potential was observed after implantation of the newest generation device. The current work demonstrates the potential of using simulations in pre-procedural planning to assess post-TAVR complications, and compare the performance of different devices to achieve better clinical outcomes. Patient-specific computational framework to assess post-transcatheter bicuspid aortic valve replacement paravalvular leakage and flow-induced thrombogenic complications and compare device performances.


Assuntos
Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Substituição da Valva Aórtica Transcateter , Humanos , Substituição da Valva Aórtica Transcateter/efeitos adversos , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Modelagem Computacional Específica para o Paciente , Simulação por Computador , Estenose da Valva Aórtica/cirurgia , Resultado do Tratamento
5.
Artif Organs ; 45(4): E41-E52, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33031563

RESUMO

Following in vitro tests established for surgical prosthetic heart valves, transcatheter aortic valves (TAV) are similarly tested in idealized geometries-excluding effects that may hamper TAVR performance in situ. Testing in vitro in pulse duplicator systems that incorporated patient-specific replicas would enhance the testing veracity by bringing it closer to the clinical scenario. To that end we compare TAV hemodynamic performance tested in idealized geometries according to the ISO standard (baseline performance) to that obtained by testing the TAVs following deployment in patient-specific replicas. Balloon-expandable (n = 2) and self-expandable (n = 3) TAVs were tested in an idealized geometry in mock-circulation system (following ISO 5840-3 guidelines) and compared to the measurements in a dedicated mock-circulation system adapted for the five patient-specific replicas. Patient-specific deployments resulted in a decline in performance as compared to the baseline idealized testing, as well as a variation in performance that depended on the design features of each device that was further correlated with the radial expansion and eccentricity of the deployed TAV stent (obtained with CT-scans of the deployed valves). By excluding the deployment effects in irregular geometries, the current idealized ISO testing is limited to characterize the baseline device performance. Utilizing patient-specific anatomic contours provides performance indicators under more stringent conditions likely encountered in vivo. It has the potential to enhance testing and development complementary to the ISO standard, for improved TAV safety and effectiveness.


Assuntos
Estenose da Valva Aórtica/cirurgia , Substituição da Valva Aórtica Transcateter/normas , Estenose da Valva Aórtica/diagnóstico por imagem , Humanos , Hidrodinâmica , Técnicas In Vitro , Modelos Cardiovasculares , Seleção de Pacientes , Desenho de Prótese , Falha de Prótese , Stents , Tomografia Computadorizada por Raios X
6.
J Neurotrauma ; 37(18): 2014-2022, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32458719

RESUMO

Optimal surgical management of spine trauma will restore blood flow to the ischemic spinal cord. However, spine stabilization may also further exacerbate injury by inducing ischemia. Current electrophysiological technology is not capable of detecting acute changes in spinal cord blood flow or localizing ischemia. Further, alerts are delayed and unreliable. We developed an epidural optical device capable of directly measuring and immediately detecting changes in spinal cord blood flow using diffuse correlation spectroscopy (DCS). Herein we test the hypothesis that our device can continuously monitor blood flow during spine distraction. Additionally, we demonstrate the ability of our device to monitor multiple sites along the spinal cord and axially resolve changes in spinal cord blood flow. DCS-measured blood flow in the spinal cord was monitored at up to three spatial locations (cranial to, at, and caudal to the distraction site) during surgical distraction in a sheep model. Distraction was halted at 50% of baseline blood flow at the distraction site. We were able to monitor blood flow with DCS in multiple regions of the spinal cord simultaneously at ∼1 Hz. The distraction site had a greater decrement in flow than sites cranial to the injury (median -40 vs. -7%,). This pilot study demonstrated high temporal resolution and the capacity to axially resolve changes in spinal cord blood flow at and remote from the site of distraction. These early results suggest that this technology may assist in the surgical management of spine trauma and in corrective surgery of the spine.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Potencial Evocado Motor/fisiologia , Osteogênese por Distração/efeitos adversos , Fluxo Sanguíneo Regional/fisiologia , Isquemia do Cordão Espinal/fisiopatologia , Animais , Feminino , Tecnologia de Fibra Óptica/métodos , Hemodinâmica/fisiologia , Vértebras Lombares/irrigação sanguínea , Vértebras Lombares/lesões , Masculino , Projetos Piloto , Ovinos , Isquemia do Cordão Espinal/diagnóstico por imagem , Vértebras Torácicas/irrigação sanguínea , Vértebras Torácicas/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA