Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Aging ; 4(1): 145-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200272

RESUMO

Ovarian aging leads to diminished fertility, dysregulated endocrine signaling and increased chronic disease burden. These effects begin to emerge long before follicular exhaustion. Female humans experience a sharp decline in fertility around 35 years of age, which corresponds to declines in oocyte quality. Despite a growing body of work, the field lacks a comprehensive cellular map of the transcriptomic changes in the aging mouse ovary to identify early drivers of ovarian decline. To fill this gap we performed single-cell RNA sequencing on ovarian tissue from young (3-month-old) and reproductively aged (9-month-old) mice. Our analysis revealed a doubling of immune cells in the aged ovary, with lymphocyte proportions increasing the most, which was confirmed by flow cytometry. We also found an age-related downregulation of collagenase pathways in stromal fibroblasts, which corresponds to rises in ovarian fibrosis. Follicular cells displayed stress-response, immunogenic and fibrotic signaling pathway inductions with aging. This report provides critical insights into mechanisms responsible for ovarian aging phenotypes. The data can be explored interactively via a Shiny-based web application.


Assuntos
Envelhecimento , Ovário , Humanos , Feminino , Camundongos , Animais , Ovário/metabolismo , Envelhecimento/genética , Oócitos/metabolismo , Fertilidade/genética , Transdução de Sinais
2.
Front Bioeng Biotechnol ; 11: 1212230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485324

RESUMO

Introduction: Respiratory infections remain a leading global health concern. Models that recapitulate the cellular complexity of the lower airway of humans will provide important information about how the immune response reflects the interactions between diverse cell types during infection. We developed a 3D human tissue-engineered lung model (3D-HTLM) composed of primary human pulmonary epithelial and endothelial cells with added blood myeloid cells that allows assessment of the innate immune response to respiratory infection. Methods: The 3D-HTLM consists of small airway epithelial cells grown at air-liquid interface layered on fibroblasts within a collagen matrix atop a permeable membrane with pulmonary microvascular endothelial cells layered underneath. After the epithelial and endothelial layers had reached confluency, an enriched blood monocyte population, containing mostly CD14+ monocytes (Mo) with minor subsets of CD1c+ classical dendritic cells (cDC2s), monocyte-derived dendritic cells (Mo-DCs), and CD16+ non-classical monocytes, was added to the endothelial side of the model. Results: Immunofluorescence imaging showed the myeloid cells migrate through and reside within each layer of the model. The myeloid cell subsets adapted to the lung environment in the 3D-HTLM, with increased proportions of the recovered cells expressing lung tissue resident markers CD206, CD169, and CD163 compared with blood myeloid cells, including a population with features of alveolar macrophages. Myeloid subsets recovered from the 3D-HTLM displayed increased expression of HLA-DR and the co-stimulatory markers CD86, CD40, and PDL1. Upon stimulation of the 3D-HTLM with the toll-like receptor 4 (TLR4) agonist bacterial lipopolysaccharide (LPS), the CD31+ endothelial cells increased expression of ICAM-1 and the production of IL-10 and TNFα was dependent on the presence of myeloid cells. Challenge with respiratory syncytial virus (RSV) led to increased expression of macrophage activation and antiviral pathway genes by cells in the 3D-HTLM. Discussion: The 3D-HTLM provides a lower airway environment that promotes differentiation of blood myeloid cells into lung tissue resident cells and enables the study of respiratory infection in a physiological cellular context.

3.
Arterioscler Thromb Vasc Biol ; 43(8): 1412-1428, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317853

RESUMO

BACKGROUND: During infectious diseases, proinflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung, the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG (erythroblast transformation-specific-related gene) as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. METHODS: Cytokine-dependent ubiquitination and proteasomal degradation of ERG were analyzed in cultured HUVECs (human umbilical vein ECs). Systemic administration of TNFα (tumor necrosis factor alpha) or the bacterial cell wall component lipopolysaccharide was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs (Ergfl/fl;Cdh5[PAC]-CreERT2), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. RESULTS: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or lipopolysaccharide resulted in a rapid and substantial degradation of ERG within lung ECs but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Ergfl/fl;Cdh5(PAC)-CreERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek-a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. CONCLUSIONS: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.


Assuntos
Doenças Transmissíveis , Fatores de Transcrição , Humanos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Citocinas/metabolismo , Doenças Transmissíveis/metabolismo , Células Cultivadas , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
4.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37162983

RESUMO

Ovarian aging leads to diminished fertility, dysregulated endocrine signaling, and increased chronic disease burden. These effects begin to emerge long before follicular exhaustion. Around 35 years old, women experience a sharp decline in fertility, corresponding to declines in oocyte quality. Despite a growing body of work, the field lacks a comprehensive cellular map of the transcriptomic changes in the aging ovary to identify early drivers of ovarian decline. To fill this gap, we performed single-cell RNA sequencing on ovarian tissue from young (3-month-old) and reproductively aged (9-month-old) mice. Our analysis revealed a doubling of immune cells in the aged ovary, with lymphocyte proportions increasing the most, which was confirmed by flow cytometry. We also found an age-related downregulation of collagenase pathways in stromal fibroblasts, which corresponds to rises in ovarian fibrosis. Follicular cells displayed stress response, immunogenic, and fibrotic signaling pathway inductions with aging. This report raises provides critical insights into mechanisms responsible for ovarian aging phenotypes.

5.
Front Pharmacol ; 14: 1150282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063266

RESUMO

Epidemiological studies have revealed sex differences in the incidence and morbidity of respiratory virus infection in the human population, and often these observations are correlated with sex differences in the quality or magnitude of the immune response. Sex differences in immunity and morbidity also are observed in animal models of respiratory virus infection, suggesting differential dominance of specific immune mechanisms. Emerging research shows intrinsic sex differences in immune cell transcriptomes, epigenomes, and proteomes that may regulate human immunity when challenged by viral infection. Here, we highlight recent research into the role(s) of sex steroids and X chromosome complement in immune cells and describe how these findings provide insight into immunity during respiratory virus infection. We focus on the regulation of innate and adaptive immune cells by receptors for androgen and estrogens, as well as genes with a propensity to escape X chromosome inactivation. A deeper mechanistic knowledge of these pathways will help us to understand the often significant sex differences in immunity to endemic or pandemic respiratory pathogens such as influenza viruses, respiratory syncytial viruses and pathogenic coronaviruses.

6.
Front Neurol ; 14: 1113954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937529

RESUMO

Introduction: Five to eight percent of the world population currently suffers from at least one autoimmune disorder. Despite multiple immune modulatory therapies for autoimmune demyelinating diseases of the central nervous system, these treatments can be limiting for subsets of patients due to adverse effects and expense. To circumvent these barriers, we investigated a nutritional intervention in mice undergoing experimental autoimmune encephalomyelitis (EAE), a model of autoimmune-mediated demyelination that induces visual and motor pathologies similar to those experienced by people with multiple sclerosis (MS). Methods: EAE was induced in female and male mice and the impact of limiting dietary carbohydrates by feeding a ketogenic diet (KD) enriched in medium chain triglycerides (MCTs), alpha-linolenic acid (an omega-3 fatty acid), and fiber was evaluated in both a preventive regimen (prior to immunization with MOG antigen) and an interventional regimen (following the onset of symptoms). Motor scores were assigned daily and visual acuity was measured using optokinetic tracking. Immunohistochemical analyses of optic nerves were done to assess inflammatory infiltrates and myelination status. Fatty acid and cytokine profiling from blood were performed to evaluate systemic inflammatory status. Results: The KD was efficacious when fed as a preventive regimen as well as when initiated as an interventional regimen following symptom onset. The KD minimally impacted body weight during the experimental time course, increased circulating ketones, prevented motor and ocular deficits, preserved myelination of the optic nerve, and reduced infiltration of immune cells to optic nerves. The KD also increased anti-inflammatory-associated omega-3 fatty acids in the plasma and reduced select cytokines in the circulation associated with EAE-mediated pathological inflammation. Discussion: In light of ongoing clinical trials using dietary strategies to treat people with MS, these findings support that a KD enriched in MCTs, omega-3 fatty acids, and fiber promotes a systemic anti-inflammatory milieu and ameliorates autoimmune-induced demyelinating visual and motor deficits.

7.
bioRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798267

RESUMO

Background: During infectious diseases, pro-inflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. Methods: Cytokine-dependent ubiquitination and proteasomal degradation of ERG was analyzed in cultured Human Umbilical Vein ECs (HUVECs). Systemic administration of TNFα or the bacterial cell wall component lipopolysaccharide (LPS) was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs ( Erg fl/fl ;Cdh5(PAC)Cre ERT2 ), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. Results: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or LPS resulted in a rapid and substantial degradation of ERG within lung ECs, but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Erg fl/fl ;Cdh5(PAC)-Cre ERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek , a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. Conclusions: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.

8.
Microorganisms ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677464

RESUMO

Gram-positive bacterial infections are a major cause of organ failure and mortality in sepsis. Cell wall peptidoglycan (PGN) is shed during bacterial replication, and Bacillus anthracis PGN promotes a sepsis-like pathology in baboons. Herein, we determined the ability of polymeric Bacillus anthracis PGN free from TLR ligands to shape human dendritic cell (DC) responses that are important for the initiation of T cell immunity. Monocyte-derived DCs from healthy donors were incubated with PGN polymers isolated from Bacillus anthracis and Staphylococcus aureus. PGN activated the human DCs, as judged by the increased expression of surface HLA-DR, CD83, the T cell costimulatory molecules CD40 and CD86, and the chemokine receptor CCR7. PGN elicited the DC production of IL-23, IL-6, and IL-1ß but not IL-12p70. The PGN-stimulated DCs induced the differentiation of naïve allogeneic CD4+ T cells into T helper (TH) cells producing IL-17 and IL-21. Notably, the DCs from a subset of donors did not produce significant levels of IL-23 and IL-1ß upon PGN stimulation, suggesting that common polymorphisms in immune response genes regulate the PGN response. In sum, purified PGN is a highly stimulatory cell wall component that activates human DCs to secrete proinflammatory cytokines and promote the differentiation of TH17 cells that are important for neutrophil recruitment in extracellular bacterial infections.

9.
Adv Sci (Weinh) ; 9(21): e2105868, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35599386

RESUMO

Immunogenic cell death (ICD) arises when cells are under stress, and their membranes are damaged. They release damage-associated molecular patterns (DAMPs) that stimulate and drive the type and magnitude of the immune response. In the presence of an antigen, DAMPs ride the longevity and efficacy of antigen-specific immunity. Yet, no tool can induce the controlled ICD with predictable results. A peptide-based tool, [II], is designed that aggregates in the cell and causes cell membrane damage, generates ICD and DAMPs release on various cell types, and hence can act as an adjuvant. An influenza vaccine is prepared by combining [II] with influenza hemagglutinin (HA) subunit antigens. The results show that [II] induced significantly higher HA-specific immunoglobulin G1 (IgG1) and IgG2a antibodies than HA-only immunized mice, while the peptide itself did not elicit antibodies. This paper demonstrates the first peptide-aggregation induced immunogenic rupture (PAIIR) approach as a vaccine adjuvant. PAIIR is a promising adjuvant with a high potential to promote universal protection upon influenza HA vaccination.


Assuntos
Vacinas contra Influenza , Influenza Humana , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos
10.
Respir Res ; 22(1): 112, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879121

RESUMO

BACKGROUND: Influenza is a highly contagious, acute, febrile respiratory infection caused by a negative-sense, single-stranded RNA virus, which belongs in the Orthomyxoviridae family. Cigarette smoke (CS) exposure worsens influenza infection in terms of frequency and severity in both human and animal models. METHODS: C57BL/6 mice with or without CS exposure for 6 weeks were inoculated intranasally with a single, non-lethal dose of the influenza A virus (IAV) A/Puerto Rico/8/1934 (PR8) strain. At 7 and 10 days after infection, lung and mediastinal lymph nodes (MLN) cells were collected to determine the numbers of total CD4 + and CD8 + T cells, and IAV-specific CD4 + and CD8 + T cells, using flow cytometry. Bronchoalveolar lavage fluid (BALF) was also collected to determine IFN-γ levels and total protein concentration. RESULTS: Although long-term CS exposure suppressed early pulmonary IAV-antigen specific CD8 + and CD4 + T cell numbers and IFN-γ production in response to IAV infection on day 7 post-infection, CS enhanced numbers of these cells and IFN-γ production on day 10. The changes of total protein concentration in BALF are consistent with the changes in the IFN-γ amounts between day 7 and 10, which suggested that excessive IFN-γ impaired barrier function and caused lung injury at the later stage of infection. CONCLUSIONS: Our results demonstrated that prior CS exposure caused a biphasic T cell and IFN-γ response to subsequent infection with influenza in the lung. Specifically, the number of IAV antigen-specific T cells on day 10 was greatly increased by CS exposure even though CS decreased the number of the same group of cells on day 7. The result suggested that CS affected the kinetics of the T cell response to IAV, which was suppressed at an early stage and exaggerated at a later stage. This study is the first to describe the different effect of long-term CS on T cell responses to IAV at early and late stages of infection in vivo.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Interferon gama/metabolismo , Pulmão/imunologia , Ativação Linfocitária , Infecções por Orthomyxoviridae/imunologia , Fumaça/efeitos adversos , Linfócitos T/imunologia , Produtos do Tabaco/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/patogenicidade , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de Tempo
12.
Front Immunol ; 11: 577718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391258

RESUMO

Dendritic cell (DC) specification and differentiation are controlled by a circuit of transcription factors, which regulate the expression of DC effector genes as well as the transcription factors themselves. E proteins are a widely expressed basic helix-loop-helix family of transcription factors whose activity is suppressed by their inhibitors, ID proteins. Loss-of-function studies have demonstrated the essential role of both E and ID proteins in different aspects of DC development. In this study, we employed a gain-of-function approach to illustrate the importance of the temporal control of E protein function in maintaining balanced differentiation of conventional DC (cDC) subsets, cDC1 and cDC2. We expressed an E protein mutant, ET2, which dimerizes with endogenous E proteins to overcome inhibition by ID proteins and activate the transcription of E protein targets. Induction of ET2 expression at the hematopoietic progenitor stage led to a dramatic reduction in cDC2 precursors (pre-cDC2s) with little impact on pre-cDC1s. Consequently, we observed decreased numbers of cDC2s in the spleen and lung, as well as in FLT3L-driven bone marrow-derived DC cultures. Furthermore, in mice bearing ET2, we detected increased expression of the IRF8 transcription factor in cDC2s, in which IRF8 is normally down-regulated and IRF4 up-regulated. This aberrant expression of IRF8 induced by ET2 may contribute to the impairment of cDC2 differentiation. In addition, analyses of the transcriptomes of splenic cDC1s and cDC2s revealed that ET2 expression led to a shift, at least in part, of the transcriptional profile characteristic of cDC2s to that of cDC1. Together, these results suggest that a precise control of E protein activity is crucial for balanced DC differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Células Dendríticas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Células Dendríticas/imunologia , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos Transgênicos , Mutação , Fenótipo , Baço/imunologia , Baço/metabolismo , Transcriptoma , Regulação para Cima
13.
Mucosal Immunol ; 12(4): 1025-1037, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31089186

RESUMO

Acute respiratory disease caused by influenza viruses is imperfectly mitigated by annual vaccination to select strains. Development of vaccines that elicit lung-resident memory CD8+ T cells (TRM) would offer more universal protection to seasonal and emerging pandemic viruses. Understanding how lung-resident dendritic cells (DCs) regulate TRM differentiation would be an important step in this process. Here, we used CD11c-cre-Irf4f/f (KO) mice, which lack lung-resident IRF4-dependent CD11b+CD24hi DCs and show IRF4 deficiency in other lung cDC subsets, to determine if IRF4-expressing DCs regulate CD8+ memory precursor cells and TRM during influenza A virus (IAV) infection. KO mice showed defective CD8+ T-cell memory, stemming from a deficit of T regulatory cells and memory precursor cells with decreased Foxo1 expression. Transfer of wild-type CD11b+CD24hi DCs into KO mice restored CD8+ memory precursor cell numbers to wild-type levels. KO mice recovered from a primary infection harbored reduced numbers of CD8+ TRM and showed deficient expansion of IFNγ+CD8+ T cells and increased lung pathology upon challenge with heterosubtypic IAV. Thus, vaccination strategies that harness the function of IRF4-dependent DCs could promote the differentiation of CD8+ TRM during IAV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Memória Imunológica , Vírus da Influenza A/imunologia , Fatores Reguladores de Interferon/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
14.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866434

RESUMO

The Bacillus anthracis Edema Toxin (ET), composed of a Protective Antigen (PA) and the Edema Factor (EF), is a cellular adenylate cyclase that alters host responses by elevating cyclic adenosine monophosphate (cAMP) to supraphysiologic levels. However, the role of ET in systemic anthrax is unclear. Efferocytosis is a cAMP-sensitive, anti-inflammatory process of apoptotic cell engulfment, the inhibition of which may promote sepsis in systemic anthrax. Here, we tested the hypothesis that ET inhibits efferocytosis by primary human macrophages and evaluated the mechanisms of altered efferocytic signaling. ET, but not PA or EF alone, inhibited the efferocytosis of early apoptotic neutrophils (PMN) by primary human M2 macrophages (polarized with IL-4, IL-10, and/or dexamethasone) at concentrations relevant to those encountered in systemic infection. ET inhibited Protein S- and MFGE8-dependent efferocytosis initiated by signaling through MerTK and αVß5 receptors, respectively. ET inhibited Rac1 activation as well as the phosphorylation of Rac1 and key activating sites of calcium calmodulin-dependent kinases CamK1α, CamK4, and vasodilator-stimulated phosphoprotein, that were induced by the exposure of M2(Dex) macrophages to Protein S-opsonized apoptotic PMN. These results show that ET impairs macrophage efferocytosis and alters efferocytic receptor signaling.


Assuntos
Antígenos de Bactérias/farmacologia , Bacillus anthracis/metabolismo , Toxinas Bacterianas/farmacologia , Macrófagos/citologia , Neutrófilos/citologia , Fagocitose/efeitos dos fármacos , Antígenos de Superfície/metabolismo , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , AMP Cíclico/metabolismo , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas do Leite/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteína S/metabolismo , Receptores de Vitronectina/metabolismo , Transdução de Sinais/efeitos dos fármacos , c-Mer Tirosina Quinase/metabolismo
15.
Front Immunol ; 9: 1653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079065

RESUMO

Sex differences in the incidence and severity of respiratory virus infection are widely documented in humans and murine models and correlate with sex biases in numbers and/or functional responses of innate immune cells in homeostasis and lung infection. Similarly, changes in sex hormone levels upon puberty, pregnancy, and menopause/aging are associated with qualitative and quantitative differences in innate immunity. Immune cells express receptors for estrogens (ERα and ERß), androgens (AR), and progesterone (PR), and experimental manipulation of sex hormone levels or receptors has revealed that sex hormone receptor activity often underlies sex differences in immune cell numbers and/or functional responses in the respiratory tract. While elegant studies have defined mechanistic roles for sex hormones and receptors in innate immune cells, much remains to be learned about the cellular and molecular mechanisms of action of ER, PR, and AR in myeloid cells and innate lymphocytes to promote the initiation and resolution of antiviral immunity in the lung. Here, we review the literature on sex differences and sex hormone regulation in innate immune cells in the lung in homeostasis and upon respiratory virus infection.

16.
Immunohorizons ; 2(2): 74-86, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29568816

RESUMO

Humans show significant sex differences in the incidence and severity of respiratory diseases, including asthma and virus infection. Sex hormones contribute to the female sex bias in type 2 inflammation associated with respiratory diseases, consistent with recent reports that female lungs harbor greater numbers of GATA-3-dependent group 2 innate lymphoid cells (ILC2s). In this study, we determined whether sex hormone levels govern sex differences in the numbers, phenotype, and function of ILC2s in the murine lung and bone marrow (BM). Our data show that lungs of female mice harbor significantly greater ILC2 numbers in homeostasis, in part due to a major subset of ILC2s lacking killer-cell lectin like receptor G1 (KLRG1), a population largely absent in male lungs. The KLRG1- ILC2s were capable of type 2 cytokine production and increased with age after sexual maturity, suggesting that a unique functional subset exists in females. Experiments with gonadectomized mice or mice bearing either global or lymphocyte restricted estrogen receptor α (Esr1) deficiency showed that androgens rather than estrogens regulated numbers of the KLRG1- ILC2 subset and ILC2 functional capacity in the lung and BM, as well as levels of GATA-3 expression in BM ILC2s. Furthermore, the frequency of BM PLZF+ ILC precursors was higher in males and increased by excess androgens, suggesting that androgens act to inhibit the transition of ILC precursors to ILC2s. Taken together, these data show that a functional subset of KLRG1- ILC2s in females contributes to the sex bias in lung ILC2s that is observed after reproductive age.

17.
Arthritis Rheumatol ; 69(6): 1221-1232, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28141918

RESUMO

OBJECTIVE: To test the hypothesis that high-fat (HF) diet-induced obesity increases proinflammatory cytokine expression, macrophage infiltration, and M1 polarization in the infrapatellar fat pad (IFP) prior to knee cartilage degeneration. METHODS: We characterized the effect of HF feeding on knee OA pathology, body adiposity, and glucose intolerance in male C57BL/6J mice and identified a diet duration that induces metabolic dysfunction prior to cartilage degeneration. Magnetic resonance imaging and histomorphology were used to quantify changes in the epididymal, subcutaneous, and infrapatellar fat pads and in adipocyte sizes. Finally, we used targeted gene expression and protein arrays, immunohistochemistry, and flow cytometry to quantify differences in fat pad markers of inflammation and immune cell populations. RESULTS: Twenty weeks of feeding with an HF diet induced marked obesity, glucose intolerance, and early osteoarthritis (OA), including osteophytes and cartilage tidemark duplication. This duration of HF feeding increased the IFP volume. However, it did not increase IFP inflammation, macrophage infiltration, or M1 macrophage polarization as observed in epididymal fat. Furthermore, leptin protein levels were reduced. This protection from obesity-induced inflammation corresponded to increased IFP fibrosis and the absence of adipocyte hypertrophy. CONCLUSION: The IFP does not recapitulate classic abdominal adipose tissue inflammation during the early stages of knee OA in an HF diet-induced model of obesity. Consequently, these findings do not support the hypothesis that IFP inflammation is an initiating factor of obesity-induced knee OA. Furthermore, the profibrotic and antihypertrophic responses of IFP adipocytes to HF feeding suggest that intraarticular adipocytes are subject to distinct spatiotemporal structural and metabolic regulation among fat pads.


Assuntos
Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Osteoartrite do Joelho/metabolismo , Gordura Abdominal , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica , Fibrose , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Hipertrofia , Mediadores da Inflamação/metabolismo , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Leptina/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Osteoartrite do Joelho/etiologia , Fatores de Tempo
18.
J Immunol ; 198(3): 1183-1201, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031342

RESUMO

The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Owing to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole-lung bronchoalveolar lavage. Six subsets of phagocytic APC (HLA-DR+) were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1-CD14+, BDCA1+CD14+, BDCA1+CD14-, and BDCA1-CD14- cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared with E. coli Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared with the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole-genome transcriptional profiling revealed a clade of "true dendritic cells" consisting of Langerin+, BDCA1+CD14+, and BDCA1+CD14- cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6 Each clade, and each member of both clades, was discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states.


Assuntos
Células Dendríticas/fisiologia , Pulmão/imunologia , Macrófagos Alveolares/fisiologia , Macrófagos/fisiologia , Adulto , Idoso , Antígenos CD/análise , Antígenos CD1/análise , Antígeno B7-2/análise , Células Dendríticas/classificação , Perfilação da Expressão Gênica , Glicoproteínas/análise , Humanos , Imunoglobulinas/análise , Receptores de Lipopolissacarídeos/análise , Pulmão/microbiologia , Macrófagos/classificação , Glicoproteínas de Membrana/análise , Pessoa de Meia-Idade , Antígeno CD83
19.
J Immunol ; 197(10): 3751-3753, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798172

RESUMO

In 2001, The American Association of Immunologists Committee on the Status of Women conducted a survey examining the percentage of women faculty members within immunology departments or women in immunology graduate programs across 27 institutions in the United States, comparing it to the percentage of women receiving a Ph.D. Here, we examine the representation of women across these same 27 immunology departments and programs to examine changes in gender equity over the last 15 years.


Assuntos
Academias e Institutos/estatística & dados numéricos , Alergia e Imunologia , Educação de Pós-Graduação , Docentes/estatística & dados numéricos , Universidades , Mulheres , Alergia e Imunologia/educação , Feminino , Humanos , Estados Unidos , Recursos Humanos
20.
J Immunol ; 196(4): 1666-77, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26746189

RESUMO

Dendritic cells (DCs) initiate immune responses in barrier tissues including lung and skin. Conventional DC (cDC) subsets, CD11b(-) (cDC1s) or CD11b(+) (cDC2s), arise via distinct networks of transcription factors involving IFN regulatory factor 4 (IRF4) and IRF8, and are specialized for unique functional responses. Using mice in which a conditional Irf4 or Irf8 allele is deleted in CD11c(+) cells, we determined whether IRF4 or IRF8 deficiency beginning in CD11c(+) cDC precursors (pre-cDCs) changed the homeostasis of mature DCs or pre-DCs in the lung, dermis, and spleen. CD11c-cre-Irf4(-/-) mice selectively lacked a lung-resident CD11c(hi)CD11b(+)SIRPα(+)CD24(+) DC subset, but not other lung CD11b(+) DCs or alveolar macrophages. Numbers of CD11b(+)CD4(+) splenic DCs, but not CD11b(+) dermal DCs, were reduced, indicating cDC2s in the lung and dermis develop via different pathways. Irf4 deficiency did not alter numbers of cDC1s. CD11c-cre-Irf8(-/-) mice lacked lung-resident CD103(+) DCs and splenic CD8α(+) DCs, yet harbored increased IRF4-dependent DCs. This correlated with a reduced number of Irf8(-/-) pre-cDCs, which contained elevated IRF4, suggesting that Irf8 deficiency diverts pre-cDC fate. Analyses of Irf4 and Irf8 haploinsufficient mice showed that, although one Irf4 allele was sufficient for lung cDC2 development, two functional Irf8 alleles were required for differentiation of lung cDC1s. Thus, IRF8 and IRF4 act in pre-cDCs to direct the terminal differentiation of cDC1 and cDC2 subsets in the lung and spleen. These data suggest that variation in IRF4 or IRF8 levels resulting from genetic polymorphisms or environmental cues will govern tissue DC numbers and, therefore, regulate the magnitude of DC functional responses.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Fatores Reguladores de Interferon/imunologia , Animais , Antígeno CD11c/imunologia , Células Dendríticas/citologia , Citometria de Fluxo , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA