Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(2): e0242890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529230

RESUMO

The spike (S) protein is one of the three proteins forming the coronaviruses' viral envelope. The S protein of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has a spatial structure similar to the S proteins of other mammalian coronaviruses, except for a unique receptor-binding domain (RBD), which is a significant inducer of host immune response. Recombinant SARS-CoV-2 RBD is widely used as a highly specific minimal antigen for serological tests. Correct exposure of antigenic determinants has a significant impact on the accuracy of such tests-the antigen has to be correctly folded, contain no potentially antigenic non-vertebrate glycans, and, preferably, should have a glycosylation pattern similar to the native S protein. Based on the previously developed p1.1 vector, containing the regulatory sequences of the Eukaryotic translation elongation factor 1 alpha gene (EEF1A1) from Chinese hamster, we created two expression constructs encoding SARS-CoV-2 RBD with C-terminal c-myc and polyhistidine tags. RBDv1 contained a native viral signal peptide, RBDv2 -human tPA signal peptide. We transfected a CHO DG44 cell line, selected stably transfected cells, and performed a few rounds of methotrexate-driven amplification of the genetic cassette in the genome. For the RBDv2 variant, a high-yield clonal producer cell line was obtained. We developed a simple purification scheme that consistently yielded up to 30 mg of RBD protein per liter of the simple shake flask cell culture. Purified proteins were analyzed by polyacrylamide gel electrophoresis in reducing and non-reducing conditions and gel filtration; for RBDv2 protein, the monomeric form content exceeded 90% for several series. Deglycosylation with PNGase F and mass spectrometry confirmed the presence of N-glycosylation. The antigen produced by the described technique is suitable for serological tests and subunit vaccine studies.


Assuntos
Expressão Gênica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Transfecção/métodos , Animais , Células CHO , Cricetulus , Vetores Genéticos , Humanos , Fator 1 de Elongação de Peptídeos/genética , Plasmídeos , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/isolamento & purificação
2.
PLoS One ; 14(7): e0219434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276557

RESUMO

Recombinant human follicle stimulating hormone (FSH), produced in Chinese hamster ovary (CHO) cells, is widely used for treatment of fertility disorders and is subject to biosimilars development. Cell lines with high specific productivities may simplify the FSH production process. Here, we used our previously established expression system based on vector p1.1 to create new cell lines secreting heterodimeric FSH protein. To this end, we linked open reading frames of both FSH subunits by the wild-type internal ribosome entry site from the encephalomyocarditis virus (EMCV IRES). Intact and double-negative for the dihydrofolate reductase CHO cells were stably transfected by the FSH-coding plasmids. Stably transfected intact cells showed higher level of the FSH secretion and were utilized for subsequent methotrexate-driven transgene amplification, which doubled their productivity. The excess of the free α-subunit was corrected by transfecting the cells by the additional p1.1-based plasmid encoding the ß-subunit of the FSH. Clonal cell lines obtained secreted mostly the heterodimeric FSH and possessed specific productivities up to 12.3±1.7 pg/cell/day. Candidate clonal cell line C-P1.3-FSH-G4 maintained a constant specific productivity for at least 2 months of culturing without the section pressure. The resulting FSH protein conformed to the international pharmaceutical quality criteria as evidenced by the receptor binding kinetics, distribution pattern of hormone isoforms and biological activity. In conclusion, our expression system offers a simple and cost-effective approach to production of FSH.


Assuntos
Hormônio Foliculoestimulante Humano/genética , Hormônio Foliculoestimulante Humano/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Ensaio de Imunoadsorção Enzimática , Ordem dos Genes , Humanos , Hibridização in Situ Fluorescente , Plasmídeos/genética , Reação em Cadeia da Polimerase , Polissacarídeos , Sensibilidade e Especificidade
3.
BMC Biotechnol ; 17(1): 33, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340620

RESUMO

BACKGROUND: Recombinant factor VIII (FVIII), used for haemophilia A therapy, is one of the most challenging among the therapeutic proteins produced in heterologous expression systems. Deletion variant of FVIII, in which the entire domain B is replaced by a short linker peptide, was approved for medical use. Efficacy and safety of this FVIII deletion variant are similar to full-length FVIII preparations while the level of production in CHO cells is substantially higher. Typical levels of productivity for CHO cell lines producing deletion variant FVIII-BDD SQ, described elsewhere, are 0.5-2 IU/ml, corresponding to the concentration of FVIII of about 0.2 µg/ml. Using standard vectors based on the cytomegalovirus promoter (CMV) and the dihydrofolate reductase cDNA we have previously obtained the cell line secreting 0.5 IU/ml of FVIII-BDD, which roughly corresponds to the previously published data. RESULTS: An expression system based on CHO genomic sequences including CHO-EEF1A promoter and Epstein-Barr virus terminal repeat fragment allowed us to achieve 80-fold increase in the production level as compared with the conventional expression system based on the CMV promoter. Immediately after the primary selection FVIII -producing cells secreted 5-10 IU/ml of FVIII-BDD, and after multi-stage methotrexate-driven amplification a stable clonal line 11A4H was selected, secreting 39 IU/ml of FVIII-BDD in the simple batch culturing conditions, which considerably exceeds known indicators for industrial producers of this protein. In contrast to other FVIII-BDD producing lines 11A4H accumulates low proportion of the secreted FVIII on the membrane. Its productivity may be further increased approximately two-fold by adding sodium butyrate and butylated hydroxyanisol to the culture medium. A five-stage purification process for the factor VIII was employed. It allowed isolation of the intact FVIII-BDD as was confirmed by mass spectrometry. Purified FVIII-BDD has a specific activity of 11,000 IU/mg, similar to known recombinant FVIII drugs. CONCLUSIONS: The recombinant FVIII-BDD was produced in CHO cells without addition of any animal-derived materials, purified and characterized. Novel genetic constructions for the expression of heterologous proteins combined with optimized cultivation method allowed to obtain the secretion level of biologically active recombinant FVIII increased by almost ten times as compared with the previously published analogues.


Assuntos
Células CHO/metabolismo , Fator VIII/biossíntese , Fator VIII/genética , Fator 1 de Elongação de Peptídeos/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Animais , Cricetulus , Melhoramento Genético , Proteínas Recombinantes/genética
4.
BMC Biotechnol ; 14: 56, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929670

RESUMO

BACKGROUND: Establishing highly productive clonal cell lines with constant productivity over 2-3 months of continuous culture remains a tedious task requiring the screening of tens of thousands of clonal colonies. In addition, long-term cultivation of many candidate lines derived in the absence of drug selection pressure is necessary. Expression vectors based on the elongation factor-1 alpha (EEF1A) gene and the dihydrofolate reductase (DHFR) selection marker (with separate promoters) can be used to obtain highly productive populations of stably transfected cells in the selection medium, but they have not been tested for their ability to support target gene amplification under gradually increasing methotrexate pressure. RESULTS: We have modified EEF1A-based vectors by linking the DHFR selection marker to the target gene in the bicistronic RNA, shortening the overall plasmid size, and adding an Epstein-Barr virus terminal repeat fragment (EBVTR) element. Presence of the EBVTR element increased the rate of stable transfection by the plasmid by 24 times that of the EBVTR-minus control and improved the rate of methotrexate-driven gene amplification. The mean expression level of the enhanced green fluorescent protein (eGFP) used herein as a model protein, increased up to eight-fold using a single round of amplification in the case of adherent colonies formation and up to 4.5-fold in the case of suspension polyclonal cultures. Several eGFP-expressing cell populations produced using vectors with antibiotic resistance markers instead of the DHFR marker were compared with each other. Stable transfection of Chinese hamster ovary (CHO) DG44 cells by the p1.2-Hygro-eGFP plasmid (containing a hygromycin resistance marker) generated highest eGFP expression levels of up to 8.9% of the total cytoplasmic protein, with less than 5% of the cell population being eGFP-negative. CONCLUSIONS: The p1.1 vector was very effective for stable transfection of CHO cells and capable of rapid MTX-driven target gene amplification, while p1.2-Hygro achieved similar eGFP expression levels as p1.1. The set of vectors we have developed should speed-up the process of generating highly productive clonal cell lines while substantially decreasing the associated experimental effort.


Assuntos
Fator 1 de Elongação de Peptídeos/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Amplificação de Genes , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 4/genética , Metotrexato/química , Metotrexato/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Sequências Repetidas Terminais/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA