Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 161(1): 318-332.e9, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819482

RESUMO

BACKGROUND & AIMS: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. METHODS: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. RESULTS: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. CONCLUSIONS: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.


Assuntos
Proteína 3 do Linfoma de Células B/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Proteína 3 do Linfoma de Células B/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Carga Tumoral , Células Tumorais Cultivadas
2.
Gastroenterology ; 156(1): 203-217.e20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296435

RESUMO

BACKGROUND AND AIMS: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS: A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Neoplasias Pancreáticas/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/prevenção & controle , Carcinoma Ductal Pancreático/secundário , Catepsinas/genética , Catepsinas/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genes ras , Heterozigoto , Homozigoto , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Transdução de Sinais , Carga Tumoral , Células Tumorais Cultivadas
3.
Nat Med ; 24(7): 954-960, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29808009

RESUMO

The ubiquitously expressed non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, is involved in signal transduction downstream of multiple growth factor, cytokine and integrin receptors1. Its requirement for complete RAS-MAPK activation and its role as a negative regulator of JAK-STAT signaling have established SHP2 as an essential player in oncogenic signaling pathways1-7. Recently, a novel potent allosteric SHP2 inhibitor was presented as a viable therapeutic option for receptor tyrosine kinase-driven cancers, but was shown to be ineffective in KRAS-mutant tumor cell lines in vitro8. Here, we report a central and indispensable role for SHP2 in oncogenic KRAS-driven tumors. Genetic deletion of Ptpn11 profoundly inhibited tumor development in mutant KRAS-driven murine models of pancreatic ductal adenocarcinoma and non-small-cell lung cancer. We provide evidence for a critical dependence of mutant KRAS on SHP2 during carcinogenesis. Deletion or inhibition of SHP2 in established tumors delayed tumor progression but was not sufficient to achieve tumor regression. However, SHP2 was necessary for resistance mechanisms upon blockade of MEK. Synergy was observed when both SHP2 and MEK were targeted, resulting in sustained tumor growth control in murine and human patient-derived organoids and xenograft models of pancreatic ductal adenocarcinoma and non-small-cell lung cancer. Our data indicate the clinical utility of dual SHP2/MEK inhibition as a targeted therapy approach for KRAS-mutant cancers.


Assuntos
Mutação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA