Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5897, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467722

RESUMO

With the advent of the first laser sources and suitable detectors, optical sensor applications immediately also came into focus. During the last decades, a huge variety of optical sensor concepts were developed, yet the forecast for the future application potential appears even larger. In this context, the development of new sensor probes at different scales down to the atomic or molecular level open new avenues for research and development. We investigated an iron based triazole molecular spin-crossover complex changing its absorption characteristics significantly by varying environmental parameters such as humidity, temperature, magnetic or electric field, respectively, with respect to its suitability for a new class of versatile molecular sensor probes. Hereby, besides the investigation of synthesized pure bulk material using different analyzing methods, we also studied amorphous micro particles which were applied in or onto optical waveguide structures. We found that significant changes of the reflection spectra can also be obtained after combining the particles with different types of optical waveguides.The obtained results demonstrate the suitability of the material complex for a broad field of future sensor applications.

3.
Adv Mater ; 35(21): e2212189, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36872845

RESUMO

Highly sensitive microfiber strain sensors are promising for the detection of mechanical deformations in applications where limited space is available. In particular for in situ battery thickness monitoring where high resolution and low detection limit are key requirements. Herein, the realization of a highly sensitive strain sensor for in situ lithium-ion (Li-ion) battery thickness monitoring is presented. The compliant fiber-shaped sensor is fabricated by an upscalable wet-spinning method employing a composite of microspherical core-shell conductive particles embedded in an elastomer. The electrical resistance of the sensor changes under applied strain, exhibiting a high strain sensitivity and extremely low strain detection limit of 0.00005 with high durability of 10 000 cycles. To demonstrate the accuracy and ease of applicability of this sensor, the real-time thickness change of a Li-ion battery pouch cell is monitored during the charge and discharge cycles. This work introduces a promising approach with the least material complexity for soft microfiber strain gauges.

4.
Sci Rep ; 12(1): 4397, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292706

RESUMO

Traditional sensing technologies have drawbacks as they are time-consuming, cost-intensive, and do not attain the required accuracy and reproducibility. Therefore, new methods of measurements are necessary to improve the detection of bacteria. Well-established electrical measurement methods can connect high sensitive sensing systems with biological requirements. One approach is to functionalize an extended-gate field-effect transistor's (EGFET) sensing area with modified porphyrins containing two different linkers. One linker connects the electrode surface with the porphyrin. The other linker bonds bacteria on the functional layer through a specific peptide chain. The negative charge on the surface of the cells regulates the surface potential which has an impact on the electrical behavior of the EGFET. The attendance of attached bacteria on the functionalized sensing area could successfully be detected.


Assuntos
Técnicas Biossensoriais , Bactérias , Técnicas Biossensoriais/métodos , Eletrodos , Reprodutibilidade dos Testes , Transistores Eletrônicos
5.
Polymers (Basel) ; 13(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685325

RESUMO

Organic thin-film lasers gain interest as potential light sources for application in diverse fields. With the current development, they hold variety of benefits such as: low-cost, high-performance, and color-tunability. Meanwhile, the production is not complicated because both the resonator and the gain medium can be assembled by solution-processable organic materials. To our knowledge, information about using poly(methyl methacrylate) (PMMA) as a matrix for organic dye lasers was insubstantial. Herein, the feasibility of using organic dye-doped PMMA as an organic dye laser was tested. Six different sample designs were introduced to find out the best sample model. The most optimum result was displayed by the sample design, in which the gain medium was sandwiched between the substrate and the photoresist layer with grating structure. The impact of dye concentration and grating period on peak wavelength was also investigated, which resulted in a shift of 6 nm and 25 nm, respectively. Moreover, there were in total six various organic dyes that could function well with PMMA to collectively perform as 'organic dye lasers', and they emitted in the range of 572 nm to 609 nm. Besides, one of the samples was used as a sensor platform. For instance, it was used to detect the concentration of sugar solutions.

6.
Materials (Basel) ; 14(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924427

RESUMO

Currently used elaborate technologies for the detection of bacteria can be improved in regard to their time consumption, labor intensity, accuracy and reproducibility. Well-known electrical measurement methods might connect highly sensitive sensing systems with biological requirements. The development of modified sensor surfaces with self-assembled monolayers (SAMs) from functionalized porphyrin for bacteria trapping can lead to a highly sensitive sensor for bacteria detection. Different A2BC-type porphyrin structures were synthesized and examined regarding their optical behavior. We achieved the synthesis of a porphyrin for SAM formation on a gold surface as electrode material. Two possible bio linkers were attached on the opposite meso-position of the porphyrin, which allows the porphyrin to react as a linker on the surface for bacteria trapping. Different porphyrin structures were attached to a gold surface, the SAM formation and the respective coverage was investigated.

7.
ACS Appl Mater Interfaces ; 13(3): 4626-4635, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33439013

RESUMO

We report on the optoelectronic properties of GaN(0001) and (11̅00) surfaces after their functionalization with phosphonic acid derivatives. To analyze the possible correlation between the acid's electronegativity and the GaN surface band bending, two types of phosphonic acids, n-octylphosphonic acid (OPA) and 1H,1H,2H,2H-perfluorooctanephosphonic acid (PFOPA), are grafted on oxidized GaN(0001) and GaN(11̅00) layers as well as on GaN nanowires. The resulting hybrid inorganic/organic heterostructures are investigated by X-ray photoemission and photoluminescence spectroscopy. The GaN work function is changed significantly by the grafting of phosphonic acids, evidencing the formation of dense self-assembled monolayers. Regardless of the GaN surface orientation, both types of phosphonic acids significantly impact the GaN surface band bending. A dependence on the acids' electronegativity is, however, only observed for the oxidized GaN(11̅00) surface, indicating a relatively low density of surface states and a favorable band alignment between the surface oxide and acids' electronic states. Regarding the optical properties, the covalent bonding of PFOPA and OPA on oxidized GaN layers and nanowires significantly affects their internal quantum efficiency, especially in the nanowire case due to the large surface-to-volume ratio. The variation in the internal quantum efficiency is related to the modification of both the internal electric fields and surface states. These results demonstrate the potential of phosphonate chemistry for the surface functionalization of GaN, which could be exploited for selective sensing applications.

8.
ACS Appl Mater Interfaces ; 12(46): 51709-51718, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164497

RESUMO

Understanding and controlling the driving forces for molecular alignment in optoelectronic thin-film devices is of crucial importance for improving their performance. In this context, the preferential orientation of organometallic iridium complexes is in the focus of research to benefit from their improved light-outcoupling efficiencies in organic light-emitting diodes (OLEDs). Although there has been great progress concerning the orientation behavior for heteroleptic Ir complexes, the mechanism behind the alignment of homoleptic complexes is still unclear yet. In this work, we present a sky-blue phosphorescent dye that shows variable alignment depending on systematic modifications of the ligands bound to the central iridium atom. From an optical study of the transition dipole moment orientation and the electrically accessible alignment of the permanent dipole moment, we conclude that the film morphology is related to both the aspect ratio of the dye and the local electrostatic interaction of the ligands with the film surface during growth. These results indicate a potential strategy to actively control the orientation of iridium-based emitters for the application in OLEDs.

9.
Sensors (Basel) ; 20(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114281

RESUMO

In recent years, lanthanide-doped nanothermometers have been mainly used in thin films or dispersed in organic solvents. However, both approaches have disadvantages such as the short interaction lengths of the active material with the pump beam or complicated handling, which can directly affect the achievable temperature resolution. We investigated the usability of a polymer fiber doped with upconversion nanocrystals as a thermometer. The fiber was excited with a wavelength stabilized diode laser at a wavelength of 976 nm. Emission spectra were recorded in a temperature range from 10 to 35 ∘C and the thermal emission changes were measured. Additionally, the pump power was varied to study the effect of self-induced heating on the thermometer specifications. Our fiber sensor shows a maximal thermal sensitivity of 1.45%/K and the minimal thermal resolution is below 20 mK. These results demonstrate that polymer fibers doped with nanocrystals constitute an attractive alternative to conventional fluorescence thermometers, as they add a long pump interaction length while also being insensitive to strong electrical fields or inert to bio-chemical environments.

10.
Sensors (Basel) ; 20(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707919

RESUMO

Lab-on-a-Chip (LoC) devices combining microfluidic analyte provision with integrated optical analysis are highly desirable for several applications in biological or medical sciences. While the microfluidic approach is already broadly addressed, some work needs to be done regarding the integrated optics, especially provision of highly integrable laser sources. Polymer optical fiber (POF) lasers represent an alignment-free, rugged, and flexible technology platform. Additionally, POFs are intrinsically compatible to polymer microfluidic devices. Home-made Rhodamine B (RB)-doped POFs were characterized with experimental and numerical parameter studies on their lasing potential. High output energies of 1.65 mJ, high slope efficiencies of 56 % , and 50 % -lifetimes of ≥900 k shots were extracted from RB:POFs. Furthermore, RB:POFs show broad spectral tunability over several tens of nanometers. A route to optimize polymer fiber lasers is revealed, providing functionality for a broad range of LoC devices. Spectral tunability, high efficiencies, and output energies enable a broad field of LoC applications.

11.
Materials (Basel) ; 13(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340260

RESUMO

For most kinds of active polymer optical fibers, a homogeneous distribution of dye molecules over the entire fiber length and cross section is required. In this study, chemical bonding of dyes to poly(methyl methacrylate) (PMMA) by copolymerization is achieved within the polymerization process instead of dissolving the dyes in the monomers. In combination with an improved fabrication mechanism, this leads to homogeneous dye distribution within the preforms. A method for proving the integration of the dyes into the polymer chains has been developed using high-performance liquid chromatography (HPLC) and size exclusion chromatography (SEC). Prestructured core-cladding preforms with dye-doped poly(cylohexyl methacrylate-co-methyl methacrylate)-core have been prepared with the Teflon string technique and were heat-drawn to few mode fibers.

12.
Adv Mater ; 31(39): e1903717, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31402527

RESUMO

Cesium lead halide perovskites are of interest for light-emitting diodes and lasers. So far, thin-films of CsPbX3 have typically afforded very low photoluminescence quantum yields (PL-QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX3 nanoparticles (NPs). Here, thin films of cesium lead bromide, which show a high PL-QY of 68% and low-threshold ASE at RT, are presented. As-deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin-film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX3 perovskites can only be achieved with NPs.

13.
Nat Commun ; 9(1): 4990, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478331

RESUMO

Improving lifetimes and efficiencies of blue organic light-emitting diodes is clearly a scientific challenge. Towards solving this challenge, we propose a unicolored phosphor-sensitized fluorescence approach, with phosphorescent and fluorescent emitters tailored to preserve the initial color of phosphorescence. Using this approach, we design an efficient sky-blue light-emitting diode with radiative decay times in the submicrosecond regime. By changing the concentration of fluorescent emitter, we show that the lifetime is proportional to the reduction of the radiative decay time and tune the operational stability to lifetimes of up to 320 h (80% decay, initial luminance of 1000 cd/m2). Unicolored phosphor-sensitized fluorescence provides a clear path towards efficient and stable blue light-emitting diodes, helping to overcome the limitations of thermally activated delayed fluorescence.

14.
ACS Appl Mater Interfaces ; 9(45): 39821-39829, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29052974

RESUMO

Nickel oxide (NiO) is a widely used material for efficient hole extraction in optoelectronic devices. However, its surface characteristics strongly depend on the processing history and exposure to adsorbates. To achieve controllability of the electronic and chemical properties of solution-processed nickel oxide (sNiO), we functionalize its surface with a self-assembled monolayer (SAM) of 4-cyanophenylphosphonic acid. A detailed analysis of infrared and photoelectron spectroscopy shows the chemisorption of the molecules with a nominal layer thickness of around one monolayer and gives an insight into the chemical composition of the SAM. Density functional theory calculations reveal the possible binding configurations. By the application of the SAM, we increase the sNiO work function by up to 0.8 eV. When incorporated in organic solar cells, the increase in work function and improved energy level alignment to the donor does not lead to a higher fill factor of these cells. Instead, we observe the formation of a transport barrier, which can be reduced by increasing the conductivity of the sNiO through doping with copper oxide. We conclude that the widespread assumption of maximizing the fill factor by only matching the work function of the oxide charge extraction layer with the energy levels in the active material is a too narrow approach. Successful implementation of interface modifiers is only possible with a sufficiently high charge carrier concentration in the oxide interlayer to support efficient charge transfer across the interface.

15.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585293

RESUMO

Stable electrical doping of organic semiconductors is fundamental for the functionality of high performance devices. It is known that dopants can be subjected to strong diffusion in certain organic semiconductors. This work studies the impact of operating conditions on thin films of the polymer poly(3-hexylthiophene) (P3HT) and the small molecule Spiro-MeOTAD, doped with two differently sized p-type dopants. The negatively charged dopants can drift upon application of an electric field in thin films of doped P3HT over surprisingly large distances. This drift is not observed in the small molecule Spiro-MeOTAD. Upon the dopants' directional movement in P3HT, a dedoped region forms at the negatively biased electrode, increasing the overall resistance of the thin film. In addition to electrical measurements, optical microscopy, spatially resolved infrared spectroscopy, and scanning Kelvin probe microscopy are used to investigate the drift of dopants. Dopant mobilities of 10-9 to 10-8 cm2 V-1 s-1 are estimated. This drift over several micrometers is reversible and can be controlled. Furthermore, this study presents a novel memory device to illustrate the applicability of this effect. The results emphasize the importance of dynamic processes under operating conditions that must be considered even for single doped layers.

16.
Chem Commun (Camb) ; 53(23): 3295-3298, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28239727

RESUMO

The first successful meridional to facial isomerization of homoleptic carbenic iridium(iii) complexes is presented. The Brønsted-acid-mediated procedure allows the conversion of large amounts of material and additionally provides an in situ purification because of precipitation of the target material during the reaction. The pronounced acid-dependency of the reaction yield observed for tris(N-phenyl,N-methyl-benzimidazol-2-yl)iridium(iii) and tris(N-phenyl,N-benzyl-benzimidazol-2-yl)iridium(iii) was investigated by labelling experiments and quantum chemical calculations. The results reveal a subtle balance between the strength of the acid, the coordinating power of the corresponding base and steric effects of the ligand sphere. Based on these findings, general rules are given for a systematic and material-specific modification of the reaction conditions for the mer-fac isomerization of homoleptic carbenic Ir(iii) complexes.

17.
Adv Mater ; 29(12)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28102599

RESUMO

Photonic nanostructures are created in organo-metal halide perovskites by thermal nanoimprint lithography at a temperature of 100 °C. The imprinted layers are significantly smoothened compared to the initially rough, polycrystalline layers and the impact of surface defects is substantially mitigated upon imprint. As a case study, 2D photonic crystals are shown to afford lasing with ultralow lasing thresholds at room temperature.

18.
Polymers (Basel) ; 9(2)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30970711

RESUMO

Waveguides made of poly-methyl-methacrylate (PMMA) play a major role in the homogeneous distribution of display backlights as a matrix for solid-state dye lasers and polymer optical fibers (POFs). PMMA is favored because of its transparency in the visible spectrum, low price, and well-controlled processability. Nevertheless, technical drawbacks, such as its limited temperature stability, call for new materials. In this work, the copolymerization technique is used to modify the properties of the corresponding homopolymers. The analytical investigation of fourteen copolymers made of methyl-methacrylate (MMA) or ethyl-methacrylate (EMA) as the basis monomer is summarized. Their polymerization behaviors are examined by NMR spectroscopy with subsequent copolymerization parameter evaluation according to Fineman-Ross and Kelen-Tüdös. Therefore, some r-parameter sets are shown to be capable of copolymerizations with very high conversions. The first applications as high-temperature resistant (HT) materials for HT-POFs are presented. Copolymers containing isobornyl-methacrylate (IBMA) as the comonomer are well-suited for this demanding application.

19.
ACS Appl Mater Interfaces ; 8(7): 4940-5, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26829619

RESUMO

Multilayer solution-processed devices in organic electronics show the tendency of intermixing of subsequently deposited layers. Here, we synthesize naphthalene tetracarboxydiimide (NDI)-based n-type semiconducting polymers with thermally cleavable side chains which upon removal render the polymer insoluble. Infrared and photoelectron spectroscopy were performed to investigate the pyrolysis process. Characterization of organic field-effect transistors provides insight into charge transport. After the pyrolysis homogeneous films could be produced which are insoluble in the primary solvent. By varying curing temperature and time we show that these process parameters govern the amount of side chains in the film and influence the device performance.

20.
J Phys Chem Lett ; 6(15): 2913-8, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26267180

RESUMO

The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA