Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glia ; 72(2): 274-288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37746760

RESUMO

Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.


Assuntos
Microglia , Estado Epiléptico , Camundongos , Humanos , Animais , Corpos Geniculados/metabolismo , Tálamo , Vias Auditivas/metabolismo , Estado Epiléptico/metabolismo
2.
Nihon Yakurigaku Zasshi ; 158(5): 347, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37673607
3.
Nihon Yakurigaku Zasshi ; 158(5): 348-352, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37673608

RESUMO

Neurons in the brain build circuits by synapsing with each other, and glial cells are involved in the formation and elimination of synapses. Glial cells include microglia, astrocytes, and oligodendrocytes, each with distinctive functions supported by different gene expression patterns and morphologies, but all have been shown to regulate the number of synapses in the neuronal circuits through a common function, synaptic phagocytosis. It has also been reported that specific glial cell types phagocytose specific synapses in different brain regions and at different times, and some of the molecular mechanisms involved in each phagocytotic process have been elucidated. For example, microglia, the most frequently reported glial cell type in relation to synaptic phagocytes, are known to recognize various "eat me signals" including complement and phagocytose synapses, contributing to the refinement of neuronal circuits during development. More recently, astrocytes and oligodendrocyte precursor cells have also been shown to be involved in synaptic phagocytosis. Interestingly, there are also reports of different types of glial cells phagocytosing the same types of synapses. And in some cases, it has been suggested that different glial cell types regulate each other's synaptic phagocytosis. In this review, we will discuss the significance of synaptic phagocytosis by multiple types of glial cells by presenting recent studies on synaptic phagocytosis by glial cells.


Assuntos
Neuroglia , Neurônios , Astrócitos , Microglia , Fagocitose
4.
Data Brief ; 46: 108862, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36624765

RESUMO

The transcription profile of microglia related to fear conditioning remains unclear. Here, we used Illumina MouseWG-6v2 microarrays to investigate the gene transcription changes in microglia and peripheral monocytes after contextual fear conditioning of C57BL/6 J mice. Mice were trained with or without a single minimized footshock stimulation (0-s or 2-s, 0.4 mA) and re-exposed to the training context without footshock for three different durations 24 h later: 0 min (FS0), 3 min (FS3), or 30 min (FS30). Whole brain microglia and peripheral monocytes were prepared 24 h after re-exposure using a neural tissue dissociation kit, including non-footshock controls for two re-exposure durations (Con3 and Con30). The data can be valuable for researchers interested in glial cells and neurotransmission studies and are related to the research article "Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia".

5.
Neurosci Res ; 187: 52-57, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36152917

RESUMO

Neurotransmitters modulate intracellular signaling not only in neurons but also in glial cells such as astrocytes, which form tripartite synapses, and oligodendrocytes, which produce the myelin sheath on axons. Another major glial cell type, microglia, which are often referred to as brain-resident immune cells, also express receptors for neurotransmitters. Recent studies have mainly focused on excitatory neurotransmitters such as glutamate, and few have examined microglial responses to the inhibitory neurotransmitter GABA. Microglia can also structurally and functionally modulate inhibitory neuronal circuits, but the underlying molecular mechanisms remain largely unknown. Since the well-regulated balance of excitatory/inhibitory (E/I) neurotransmission is believed to be the basis of proper brain function, understanding how microglia regulate and respond to inhibitory neurotransmission will help us deepen our knowledge of neuron-glia interactions. In this review, we discuss the mechanisms by which GABA alters microglial behavior and the possibility that microglia are more than just GABA-receiving cells.


Assuntos
Microglia , Transmissão Sináptica , Microglia/metabolismo , Neurônios GABAérgicos/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Front Cell Neurosci ; 16: 918442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910250

RESUMO

Microglia, the major immune cells in the brain, are reported to differ in gene expression patterns among species. Therefore, it would be preferable in some cases to use human microglia rather than mouse microglia in microglia-targeted disease research. In the past half a decade, researchers have developed in vivo transplantation methods in which human induced pluripotent stem cell-derived microglia (hiPSC-MG) are transplanted into a living mouse brain. However, in vivo transplantation methods are not necessarily accessible to all researchers due to the difficulty of obtaining the materials needed and the transplantation technique itself. In addition, for in vivo systems for microglia-targeted drug screening, it is difficult to control the pharmacokinetics, especially blood-brain barrier permeability. Therefore, in addition to existing in vivo transplantation systems, the development of an ex vivo transplantation system would help to further evaluate the properties of hiPSC-MG. In this study, we aimed to establish a method to efficiently transplant hiPSC-MG into cultured mouse hippocampal slices. We found that approximately 80% of the total microglia in a cultured slice were replaced by hiPSC-derived microglia when innate microglia were pharmacologically removed prior to transplantation. Furthermore, when neuronal death was induced by applying Kainic acid (KA) to slice cultures, transplanted hiPSC-MG changed their morphology and phagocytosed cell debris. Thus, this study provides a method to transplant hiPSC-MG into the mouse hippocampal slice cultures with a high replacement rate. Because the transplanted microglia survived and exerted phagocytic functions, this method will be useful for evaluating the properties of hiPSC-MG ex vivo.

7.
Brain Res Bull ; 189: 57-68, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987296

RESUMO

Microglia have been suggested to be involved in the underlying mechanism of conditional fear memory formation by regulating inflammatory cytokines. However, the mechanism linking microglia and neuronal activity related to fear conditioning remains unclear. This study characterized the transcription profile of microglia in a fear memory conditional mouse model. Compared with those in control mice microglia, the most significantly induced genes were synapse-related, whereas immune-related genes were reduced due to fear memory consolidation. Whilst the increased expression of synapse-related genes was reversed after fear memory extinction, that of immunological genes was not, strongly suggesting a connection between microglia, neurons, and a dysregulated immune response following contextual fear conditioning. Furthermore, in the hippocampal microglia, we found that the expression of neurotransmitter release regulators, γ-aminobutyric acid (GABA) receptor GABRB3 and synapsin 1/2, increased under fear memory consolidation and restored (decreased) after extinction. In addition, compared with the transcription profile in peripheral monocytes, few overlapping genes were not enriched in biological processes. Taken together, the identified conditional fear stress-induced changes in mouse microglial transcription profiles suggest that microglia-neuron communication mediates contextual fear conditioning.


Assuntos
Microglia , Sinapsinas , Animais , Citocinas/metabolismo , Medo/fisiologia , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Neurotransmissores/metabolismo , Sinapses/metabolismo , Sinapsinas/metabolismo , Transcrição Gênica , Ácido gama-Aminobutírico/metabolismo
8.
iScience ; 25(1): 103642, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35106468

RESUMO

Vitamin C (VC) distribution in our body requires VC transporters. However, mammalian VC exporters are yet to be identified. Herein, to unravel this long-standing mystery, we focused on the pathways whereby VC moves from blood to the brain, which should require a VC entrance and exit system composed of an importer and a latent exporter. Via cell-based transport analyses of VC efflux and using knockout mice generated via the CRISPR-Cas9 system, we identified GLUT12/SLC2A12 as a physiologically important VC efflux protein expressed in the choroid plexus; Glut12/Slc2a12 knockout halved the cerebral VC levels, markedly increased VC accumulation in the choroid plexus, and reduced the cerebrospinal fluid VC levels. These findings facilitate our understanding of VC regulation and the physiological impact of VC in our body.

9.
Brain Nerve ; 74(2): 133-142, 2022 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-35108677

RESUMO

Brain tissue is vulnerable to temperature changes, which are known to affect the structure and function of neural circuits. Owing to their dynamic ramified processes, microglia, which serve as immune cells in the brain, are associated with surveillance of the brain environment and mediate synaptic pruning to reorganize neural circuits. In this section, we discuss the possible role of microglia as temperature sensors in the brain via thermosensitive transient receptor potential channels and their role in reorganization of neural circuits.


Assuntos
Microglia , Sinapses , Encéfalo , Neurônios , Temperatura
10.
Sci Adv ; 7(48): eabj8080, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826234

RESUMO

Social stress impairs hippocampal neurogenesis and causes psychiatric disorders such as depression. Recent studies have highlighted the significance of increased body temperature in stress responses; however, whether and how social stress­induced hyperthermia affects hippocampal neurogenesis remains unknown. Here, using transgenic mice in which the thermosensitive transient receptor potential vanilloid 4 (TRPV4) is conditionally knocked out in Nestin-expressing neural stem cells (NSCs), we found that social defeat stress (SDS)­induced hyperthermia activates TRPV4 in NSCs in the dentate gyrus and thereby impairs hippocampal neurogenesis. Specifically, SDS activated TRPV4 in NSCs and induced the externalization of phosphatidylserine in NSCs, which was recognized by the brain-resident macrophage, microglia, and promoted the microglial engulfment of NSCs. SDS-induced impairment of hippocampal neurogenesis was ameliorated by NSC-specific knockout of TRPV4 or pharmacological removal of microglia. Thus, this study reveals a previously unknown role of thermosensitive receptors expressed by NSCs in stress responses.

11.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638890

RESUMO

Extracellular vesicles (EVs) are composed of lipid bilayer membranes and contain various molecules, such as mRNA and microRNA (miRNA), that regulate the functions of the recipient cell. Recent studies have reported the importance of EV-mediated intercellular communication in the brain. The brain contains several types of cells, including neurons and glial cells. Among them, astrocytes are the most abundant glial cells in the mammalian brain and play a wide range of roles, from structural maintenance of the brain to regulation of neurotransmission. Furthermore, since astrocytes can take up EVs, it is possible that EVs originating from inside and outside the brain affect astrocyte function, which in turn affects brain function. However, it has not been fully clarified whether the specific targeting mechanism of EVs to astrocytes as recipient cells exists. In recent years, EVs have attracted attention as a cell-targeted therapeutic approach in various organs, and elucidation of the targeting mechanism of EVs to astrocytes may pave the way for new therapies for brain diseases. In this review, we focus on EVs in the brain that affect astrocyte function and discuss the targeting mechanism of EVs to astrocytes.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/citologia , Encéfalo/citologia , Vesículas Extracelulares/genética , Humanos , MicroRNAs/genética , Microglia/citologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/citologia , RNA Mensageiro/genética
12.
Cells ; 10(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34685535

RESUMO

Macrophages maintain tissue homeostasis by phagocytosing and removing unwanted materials such as dead cells and cell debris. Microglia, the resident macrophages of the central nervous system (CNS), are no exception. In addition, a series of recent studies have shown that microglia phagocytose the neuronal synapses that form the basis of neural circuit function. This discovery has spurred many neuroscientists to study microglia. Importantly, in the CNS parenchyma, not only microglia but also blood-derived monocytes, which essentially differentiate into macrophages after infiltration, exert phagocytic ability, making the study of phagocytosis in the CNS even more interesting and complex. In particular, in the diseased brain, the phagocytosis of tissue-damaging substances, such as myelin debris in multiple sclerosis (MS), has been shown to be carried out by both microglia and blood-derived monocytes. However, it remains largely unclear why blood-derived monocytes need to invade the parenchyma, where microglia are already abundant, to assist in phagocytosis. We will also discuss whether this phagocytosis can affect the fate of the phagocytosing cell itself as well as the substance being phagocytosed and the surrounding environment in addition to future research directions. In this review, we will introduce recent studies to answer a question that often arises when studying microglial phagocytosis: under what circumstances and to what extent blood-derived monocytes infiltrate the CNS and contribute to phagocytosis. In addition, the readers will learn how recent studies have experimentally distinguished between microglia and infiltrating monocytes. Finally, we aim to contribute to the progress of phagocytosis research by discussing the effects of phagocytosis on phagocytic cells.


Assuntos
Sistema Nervoso Central/fisiologia , Microglia/metabolismo , Monócitos/metabolismo , Fagocitose/fisiologia , Animais , Modelos Animais de Doenças , Camundongos
13.
Cell Rep ; 36(4): 109427, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320360

RESUMO

An artificial tool for manipulating local cerebral blood flow (CBF) is necessary for understanding how CBF controls brain function. Here, we generate vascular optogenetic tools whereby smooth muscle cells and endothelial cells express optical actuators in the brain. The illumination of channelrhodopsin-2 (ChR2)-expressing mice induces a local reduction in CBF. Photoactivated adenylyl cyclase (PAC) is an optical protein that increases intracellular cyclic adenosine monophosphate (cAMP), and the illumination of PAC-expressing mice induces a local increase in CBF. We target the ventral striatum, determine the temporal kinetics of CBF change, and optimize the illumination intensity to confine the effects to the ventral striatum. We demonstrate the utility of this vascular optogenetic manipulation in freely and adaptively behaving mice and validate the task- and actuator-dependent behavioral readouts. The development of vascular optogenetic animal models will help accelerate research linking vasculature, circuits, and behavior to health and disease.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Movimento , Optogenética , Animais , Arteríolas/metabolismo , Comportamento Animal , Capilares/metabolismo , Channelrhodopsins/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Neurônios/metabolismo , Fatores de Tempo , Vênulas/metabolismo
14.
Cells ; 10(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072424

RESUMO

Phagocytosis by glial cells has been shown to play an important role in maintaining brain homeostasis. Microglia are currently considered to be the major phagocytes in the brain parenchyma, and these cells phagocytose a variety of materials, including dead cell debris, abnormally aggregated proteins, and, interestingly, the functional synapses of living neurons. The intracellular signaling mechanisms that regulate microglial phagocytosis have been studied extensively, and several important factors, including molecules known as "find me" signals and "eat me" signals and receptors on microglia that are involved in phagocytosis, have been identified. In addition, recent studies have revealed that astrocytes, which are another major glial cell in the brain parenchyma, also have phagocytic abilities. In this review, we will discuss the roles of microglia and astrocytes in phagocytosis-mediated brain homeostasis, focusing on the characteristics and differences of their phagocytic abilities.


Assuntos
Encéfalo/citologia , Neuroglia/citologia , Neurônios/citologia , Fagócitos/citologia , Animais , Astrócitos/citologia , Homeostase/fisiologia , Humanos
15.
Front Immunol ; 12: 617564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763064

RESUMO

Microglia are highly dynamic in the brain in terms of their ability to migrate, proliferate, and phagocytose over the course of an individual's life. Real-time imaging is a useful tool to examine how microglial behavior is regulated and how it affects the surrounding environment. However, microglia are sensitive to environmental stimuli, so they possibly change their state during live imaging in vivo, mainly due to surgical damage, and in vitro due to various effects associated with culture conditions. Therefore, it is difficult to perform live imaging without compromising the properties of the microglia under physiological conditions. To overcome this barrier, various experimental conditions have been developed; recently, it has become possible to perform live imaging of so-called surveillant microglia in vivo, ex vivo, and in vitro, although there are various limitations. Now, we can choose in vivo, ex vivo, or in vitro live imaging systems according to the research objective. In this review, we discuss the advantages and disadvantages of each experimental system and outline the physiological significance and molecular mechanisms of microglial behavior that have been elucidated by live imaging.


Assuntos
Microglia/fisiologia , Imagem Molecular , Animais , Biomarcadores , Comunicação Celular , Técnicas de Cultura de Células , Rastreamento de Células , Células Cultivadas , Diagnóstico por Imagem/métodos , Expressão Gênica , Genes Reporter , Humanos , Imuno-Histoquímica , Imagem Molecular/métodos , Transdução de Sinais
16.
J Neurophysiol ; 125(4): 1322-1329, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33656933

RESUMO

Mean firing rates vary across neurons in a neuronal network. Although most neurons infrequently emit spikes, a small fraction of neurons exhibit extremely high frequencies of spikes; this fraction of neurons plays a pivotal role in information processing, however, little is known about how these outliers emerge and whether they are maintained over time. In primary cultures of mouse hippocampal neurons, we traced highly active neurons every 24 h for 7 wk by optically observing the fluorescent protein dVenus; the expression of dVenus was controlled by the promoter of Arc, an immediate early gene that is induced by neuronal activity. Under default-mode conditions, 0.3%-0.4% of neurons were spontaneously Arc-dVenus positive, exhibiting high firing rates. These neurons were spatially clustered, exhibited intermittently repeated dVenus expression, and often continued to express Arc-dVenus for approximately 2 wk. Thus, highly active neurons constitute a few select functional subpopulations in the neuronal network.NEW & NOTEWORTHY The overdispersion of neuronal activity levels can often be attributed to very few neurons exhibiting extremely high firing rates, but due to technical difficulty, no studies have examined how these outliers are selected during development and whether they are maintained over time. We optically monitored highly active neurons for as long as 7 wk in vitro and found that they constituted a unique population that was different from other "mediocre" neurons with normal firing rates.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Masculino , Camundongos , Coloração e Rotulagem
17.
Dev Neurobiol ; 81(5): 568-590, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33583110

RESUMO

Synapses are fundamental structures of neural circuits that transmit information between neurons. Thus, the process of neural circuit formation via proper synaptic connections shapes the basis of brain functions and animal behavior. Synapses continuously undergo repeated formation and elimination throughout the lifetime of an organism, reflecting the dynamics of neural circuit function. The structural transformation of synapses has been described mainly in relation to neural activity-dependent strengthening and weakening of synaptic functions, that is, functional plasticity of synapses. An increasing number of studies have unveiled the roles of microglia, brain-resident immune cells that survey the brain parenchyma with highly motile processes, in synapse formation and elimination as well as in regulating synaptic function. Over the past 15 years, the molecular mechanisms underlying microglia-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of microglia-dependent regulation causes synaptic dysfunction that leads to brain diseases. In this review, we will broadly introduce studies that report the roles of microglia in synaptic plasticity and the possible underlying molecular mechanisms.


Assuntos
Microglia , Sinapses , Animais , Microglia/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
18.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452135

RESUMO

Astrocytes play a key role in brain homeostasis and functions such as memory. Specifically, astrocytes express multiple receptors that transduce signals via the second messenger cAMP. However, the involvement of astrocytic cAMP in animal behavior and the underlying glial-neuronal interactions remains largely unknown. Here, we show that an increase in astrocytic cAMP is sufficient to induce synaptic plasticity and modulate memory. We developed a method to increase astrocytic cAMP levels in vivo using photoactivated adenylyl cyclase and found that increased cAMP in hippocampal astrocytes at different time points facilitated memory formation but interrupted memory retention via NMDA receptor-dependent plasticity. Furthermore, we found that the cAMP-induced modulation of memory was mediated by the astrocyte-neuron lactate shuttle. Thus, our study unveils a role of astrocytic cAMP in brain function by providing a tool to modulate astrocytic cAMP in vivo.


Assuntos
Adenilil Ciclases/genética , Astrócitos/metabolismo , AMP Cíclico/metabolismo , Memória/fisiologia , Plasticidade Neuronal/genética , Neurônios/metabolismo , Adenilil Ciclases/metabolismo , Animais , Astrócitos/citologia , Comunicação Celular , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Ácido Láctico/metabolismo , Luz , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Optogenética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas Estereotáxicas , Sinapses/metabolismo , Fatores de Tempo
19.
Neural Regen Res ; 16(7): 1369-1371, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33318419

RESUMO

Microglia are brain-resident immune cells that contribute to the maintenance of brain homeostasis. In the epileptic brain, microglia show various activation phenotypes depending on the stage of epileptogenesis. Therefore, it remains unclear whether microglial activation acts in a pro-epileptic or anti-epileptic manner. In mesial temporal lobe epilepsy, one of the most common form of epilepsies, microglia exhibit at least two distinct morphologies, amoeboid shape and ramified shape. Amoeboid microglia are often found in sclerotic area, whereas ramified microglia are mainly found in non-sclerotic area; however, it remains unclear whether these structurally distinct microglia share separate roles in the epileptic brain. Here, we review the roles of the two distinct microglial phenotypes, focusing on their pro- and anti-epileptic roles in terms of inflammatory response, regulation of neurogenesis and microglia-neuron interaction.

20.
Eur J Neurosci ; 54(5): 5880-5901, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32920880

RESUMO

Hippocampal neurogenesis continues throughout life and has been suggested to play an essential role in maintaining spatial cognitive function under physiological conditions. An increasing amount of evidence has indicated that adult neurogenesis is tightly controlled by environmental conditions in the neurogenic niche, which consists of multiple types of cells including microglia and astrocytes. Microglia maintain the environment of neurogenic niche through their phagocytic capacity and interaction with neurons via fractalkine-CX3CR1 signaling. In addition, microglia release growth factors such as brain-derived neurotrophic factor (BDNF) and cytokines such as tumor necrosis factor (TNF)-α to support the development of adult born neurons. Astrocytes also manipulate neurogenesis by releasing various soluble factors including adenosine triphosphate and lactate. Whereas, under pathological conditions such as Alzheimer's disease, depression, and epilepsy, microglia and astrocytes play a leading role in inflammation and are involved in attenuating the normal process of neurogenesis. The modulation of glial functions on neurogenesis in these brain diseases are attracting attention as a new therapeutic target. This review describes how these glial cells play a role in adult hippocampal neurogenesis in both health and disease, especially focusing glia-derived factors.


Assuntos
Astrócitos , Microglia , Hipocampo , Neurogênese , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA