Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397118

RESUMO

Chronic and excessive ultraviolet (UVA/UVB) irradiation exposure is known as a major contributor to premature skin aging, which leads to excessive reactive oxygen species generation, disturbed extracellular matrix homeostasis, DNA damage, and chronic inflammation. Sunscreen products are the major preventive option against UVR-induced photodamage, mostly counteracting the acute skin effects and only mildly counteracting accelerated aging. Therefore, novel anti-photoaging and photopreventive compounds are a subject of increased scientific interest. Our previous investigations revealed that the endemic plant Haberlea rhodopensis Friv. (HRE) activates the antioxidant defense through an NRF2-mediated mechanism in neutrophiles. In the present study, we aimed to investigate the photoprotective potential of HRE and two of its specialized compounds-the phenylethanoid glycosides myconoside (MYC) and calceolarioside E (CAL)-in UVA/UVB-stimulated human keratinocytes in an in vitro model of photoaging. The obtained data demonstrated that the application of HRE, MYC, and CAL significantly reduced intracellular ROS formation in UVR-exposed HaCaT cells. The NRF2/PGC-1α and TGF-1ß/Smad/Wnt signaling pathways were pointed out as having a critical role in the observed CAL- and MYC-induced photoprotective effect. Collectively, CAL is worth further evaluation as a potent natural NRF2 activator and a promising photoprotective agent that leads to the prevention of UVA/UVB-induced premature skin aging.


Assuntos
Ácidos Cafeicos , Glucosídeos , Envelhecimento da Pele , Dermatopatias , Humanos , Ácidos Cafeicos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Dermatopatias/metabolismo , Raios Ultravioleta/efeitos adversos
2.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240121

RESUMO

The synthetic 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a potent activator of the erythroid 2-p45-derived factor 2, Nrf2, a leucine-zipper regulator of the antioxidant response. Herein, we investigated the effect of CDDO-Me on neutrophil function in a murine model of joint damage. Collagenase-induced osteoarthritis (CIOA) was initiated by the intra-articular injection of collagenase in the knee-joint cavity of Balb/c mice. CDDO-Me was administrated intra-articularly twice a week starting at day 7 post-CIOA, and its effect was evaluated at day 14. Neutrophils in blood and bone marrow (BM), cell apoptosis, necrosis, expression of C-X-C chemokine receptor 4 (CXCR4), beta-galactosidase (ß-Gal), and Nrf2 levels were measured by flow cytometry. In vitro, CDDO-Me promoted cell survival, reduced cell necrosis, and increased Nrf2 levels by 1.6 times. It decreased surface CXCR4 expression and reduced the frequency of senescent ß-Gal+CXCR4+ neutrophils by three times. In vivo, the degree of knee-joint damage in CIOA was correlated with upregulated CXCR4 on CD11b+ neutrophils. CDDO-Me improved the disease histological score, increased the levels of Nrf2, and downregulated surface CXCR4 on mature BM cells. Our data suggest that CDDO-Me may act as a potent regulator of neutrophil senescence during the progression of knee-joint damage.


Assuntos
Neutrófilos , Ácido Oleanólico , Camundongos , Animais , Neutrófilos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Modelos Animais de Doenças , Ácido Oleanólico/farmacologia , Necrose
3.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458621

RESUMO

Culture of plant cells or tissues is a scalable, sustainable, and environmentally friendly approach to obtain extracts and secondary metabolites of uniform quality that can be continuously supplied in controlled conditions, independent of geographical and seasonal variations, environmental factors, and negative biological influences. In addition, tissues and cells can be extracted/obtained from the by-products of other industrial cultivations such as that of Lavandula angustifolia Miller (L. angustifolia), which is largely cultivated for the collection of flowers. Given that, an extract rich in rosmarinic acid was biotechnologically produced starting from cell suspension of L. angustifolia, which was then loaded in hyalurosomes, special phospholipid vesicles enriched with sodium hyaluronate, which in turn are capable of both immobilizing and stabilizing the system. These vesicles have demonstrated to be good candidates for skin delivery as their high viscosity favors their residence at the application site, thus promoting their interaction with the skin components. The main physico-chemical and technological characteristics of vesicles (i.e., mean diameter, polydispersity index, zeta potential and entrapment efficiency of extract in vesicles) were measured along with their biological properties in vitro: biocompatibility against fibroblasts and ability to protect the cells from oxidative stress induced by hydrogen peroxide. Overall, preliminary results disclosed the promising properties of obtained formulations to be used for the treatment of skin diseases associated with oxidative stress and inflammation.


Assuntos
Lavandula , Antioxidantes/farmacologia , Cinamatos , Depsídeos/farmacologia , Lavandula/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ácido Rosmarínico
4.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834106

RESUMO

Psoriasis is a chronic inflammatory skin condition characterized by abnormal keratinocyte proliferation and differentiation that is accompanied with dysregulated immune response and abnormal vascularization. Devil's claw (Harpagophytum procumbens (Burch.) DC. ex Meisn.) tubers extract has been used both systemically and topically for treatment of chronic inflammatory diseases such as arthritis, osteoporosis, inflammatory bowel disease, among others. However, its potential mechanisms of action against psoriasis remains poorly investigated. The human keratinocyte HaCaT cell line is a well-accepted in vitro model system for inflammatory skin disorders such as psoriasis. The present study involved an exploration of the effect of biotechnologically produced H. procumbens (HP) cell suspension extract and pure phenylethanoid glycosides verbascoside (VER) and leucosceptoside A (LEU) in interferon (IFN)-γ/interleukin (IL)-17A/IL-22-stimulated HaCaT cells as a model of psoriasis-like inflammation. Changes in key inflammatory signaling pathways related to psoriasis development were detected by reverse transcription polymerase chain reaction and western blotting. Treatment with LEU, but not VER and HP extract improved psoriasis-related inflammation via suppression of the PI3K/AKT signaling in IFN-γ/IL-17A/IL-22-stimulated HaCaT cells. Our results suggest that LEU may exhibit therapeutic potential against psoriasis by regulating keratinocyte differentiation through inhibition of the PI3K/AKT pathway.


Assuntos
Anti-Inflamatórios , Glucosídeos , Harpagophytum/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Linhagem Celular , Glucosídeos/química , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Psoríase/patologia
5.
Front Pharmacol ; 12: 680168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986690

RESUMO

Psoriasis is a common skin pathology, characterized by dysregulation of epidermal keratinocyte function attended by persistent inflammation, suggesting that molecules with anti-inflammatory potential may be effective for its management. Rosmarinic acid (RA) is a natural bioactive molecule known to have an anti-inflammatory potential. Here we examined the effect of biotechnologically produced cell suspension extract of Lavandula angustifolia Mill (LV) high in RA content as treatment for psoriasis-associated inflammation in human keratinocytes. Regulatory genes from the nuclear factor kappa B (NF-κB) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways were upregulated upon stimulation with a combination of interferon gamma (IFN-γ), interleukin (IL)-17A and IL-22. We also observed that both LV extract and RA could inhibit JAK2, leading to reduced STAT1 phosphorylation. Further, we demonstrated that LV extract inhibited phosphoinositide 3-kinases (PI3K) and protein kinase B (AKT), which could be implicated in reduced hyperproliferation in keratinocytes. Collectively, these findings indicate that the biotechnologically produced LV extract resolved psoriasis-like inflammation in human keratinocytes by interfering the JAK2/STAT1 signaling pathway and its effectiveness is due to its high content of RA (10%). Hence, both LV extract and pure RA possess the potential to be incorporated in formulations for topical application as therapeutic approach against psoriasis.

6.
Phytochem Anal ; 31(6): 756-769, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32311178

RESUMO

INTRODUCTION: The main concern regarding the authenticity and quality of Rhodiola rosea L. (Sedum rosea (L.) Scop.) products is their adulteration with other Rhodiola species. OBJECTIVE: The aim of the study was the development of a reliable and practical analytical platform for quality and quantity assessment of the characteristic molecules in three Rhodiola species (R. rosea, R. kirilowii (Regel) Maxim and R. crenulata (Hook. f. & Thomson) H. Ohba), commercial products and their possible application as markers for the authentication of R. rosea based products. MATERIAL AND METHODS: The major molecules were identified by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR)-based metabolomics and quantitatively determined by high-performance liquid chromatography ultraviolet (HPLC-UV) analysis. The orthogonal projections to latent structures discriminant analysis (OPLS-DA) revealed the specific patterns in the metabolite profiles of R. rosea and R. crenulata. RESULTS: The coumarin crenulatin was only identified in R. crenulata and can be used as a marker to detect potential adulteration of the commercial products. Crenulatin was identified in two of the four analysed products by NMR-spectroscopy. According to the HPLC data, in less than a quarter of all products, the labelled amounts of salidroside and total rosavins were confirmed. CONCLUSIONS: The developed analytical platform was found to be useful in the investigations of the phytochemical diversity of different Rhodiola species, the recognition of the unique metabolites between them and the identification of adulterated products. Therefore, this approach could be applied from the earliest to the latest stages of the value chain in the manufacturing of R. rosea based products.


Assuntos
Rhodiola , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Metabolômica , Extratos Vegetais
7.
Food Chem Toxicol ; 108(Pt B): 419-428, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28189478

RESUMO

Rhodiola rosea L. extracts have shown neuroprotective, anti-fatigue, anti-inflammatory and anti-tumor properties. However, the studies on their effect on T cell function are rather scarce. We examined the potential of R. rosea extract and its major constituents - salidroside, rosarin, rosavin and rosin to alter cell growth of human Jurkat T cells, apoptosis of splenic mouse CD3 T cells and expression of the surface markers and phosphorylation of extracellular signal-regulated kinase (ERK). The initial screening for cell viability in Jurkat T cells and for apoptosis of mouse T cells showed the strongest activity for rosavin and rosarin. Rosarin and rosavin did not alter significantly the dynamic of CD69 expression upon stimulation, but altered TNF-related apoptosis-inducing ligand (TRAIL) expression. Rosavin inhibited TRAIL up-regulation, while rosarin showed an opposite effect. Indeed, rosarin increased the frequencies of CD3+TRAIL+ T cells and the fold inhibition of ERK phosphorylation. Our data showed that different effects of rosarin and rosavin on TRAIL expression can involve distinct action on ERK signaling and hence highlighted their potential to manipulate TRAIL as a tool to rescue the resistance to apoptosis in autoimmune diseases and cancer.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhodiola/química , Linfócitos T/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Sobrevivência Celular , Dissacarídeos/química , Dissacarídeos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Células Jurkat , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fosforilação , Extratos Vegetais/química , Rizoma/química , Baço/citologia , Ligante Indutor de Apoptose Relacionado a TNF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA