Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Deliv ; 21(7): 1103-1114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39104360

RESUMO

INTRODUCTION: Transnasal aerosol drug delivery has become widely accepted for treating acutely ill infants, children, and adults. More recently aerosol administration to wider populations receiving high and low-flow nasal oxygen has become common practice. AREAS COVERED: Skepticism of insufficient aerosol delivery to the lungs has been tempered by multiple in vitro explorations of variables to optimize delivery efficiency. Additionally, clinical studies demonstrated comparable clinical responses to orally inhaled aerosols. This paper provides essential clinical guidance on how to improve transnasal aerosol delivery based on device-, settings-, and drug-related optimization to serve as a resource for educational initiatives and quality enhancement endeavors at healthcare institutions. EXPERT OPINION: Transnasal aerosol delivery is proliferating worldwide, but indiscriminate use of excessive-high flows, poor selection and placement of aerosol devices and circuits can greatly reduce aerosol delivery and efficacy, potentially compromising treatment to acute and critically ill patients. Attention to these details can improve inhaled dose by an order of magnitude, making the difference between effective treatment and the progression to more invasive ventilatory support, with greater inherent risk and cost. These revelations have prompted specific recommendations for optimal delivery, driving advancements in aerosol generators, formulations, and future device designs to administer aerosols and maximize treatment effectiveness.


Assuntos
Aerossóis , Sistemas de Liberação de Medicamentos , Nebulizadores e Vaporizadores , Humanos , Administração por Inalação , Criança , Desenho de Equipamento , Preparações Farmacêuticas/administração & dosagem , Adulto , Administração Intranasal , Lactente , Estado Terminal
2.
Expert Rev Respir Med ; 18(3-4): 159-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38795074

RESUMO

INTRODUCTION: Mobile health (mHealth) technology in respiratory medicine is a fast-growing and promising digital technology that is popular among patients and healthcare providers (HCPs). They provide reminders and step-by-step instructions for the correct inhalation technique, monitor patients' adherence to treatment, and facilitate communication between patients and HCPs. AREAS COVERED: While numerous mHealth apps have been developed over the years, most applications do not have supporting evidence. Selecting the best mHealth app in respiratory medicine is challenging due to limited studies carrying out mHealth app selection. Although mHealth technologies play an important part in the future of respiratory medicine, there is no single guide on the evaluation and selection of mHealth technologies for patients with pulmonary diseases. This paper aims to provide an overview of mHealth technologies, particularly emphasizing digital inhalers and standalone applications used in asthma. Additionally, it offers insights into the evaluation, selection, and pertinent considerations surrounding mHealth applications in respiratory medicine. EXPERT OPINION: Evaluating mHealth apps will take time, resources, and collaboration between stakeholders such as governmental regulatory bodies, subject-matter experts, and industry representatives. Filling the gaps in the evaluation and selection of the mHealth app will improve clinical decision-making, personalized treatments, self-management and disease monitoring in respiratory medicine.


Assuntos
Aplicativos Móveis , Telemedicina , Humanos , Pneumologia , Asma/terapia , Asma/diagnóstico , Nebulizadores e Vaporizadores
3.
J Photochem Photobiol B ; 232: 112476, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35633608

RESUMO

Conventional wound healing treatments are insufficient for chronic wounds caused by factors such as senescence of fibroblasts, reduced growth factor synthesis, and poor angiogenesis. Recently, tissue engineering approaches have been investigated to develop effective therapies. In this study, a biochemical/biophysical stimulant-based 3D system was developed for the healing of chronic wounds. In this direction, genipin crosslinked chitosan (CHT)/gelatin (GEL) scaffolds were fabricated by freeze-drying and loaded with platelet-rich plasma (PRP). The scaffolds were seeded with human dermal fibroblasts and then, polychromatic light in near infrared region (NIR) was applied to the scaffolds for activating the platelets and stimulating the fibroblasts (photoactivation, PAC). Thus, fibroblasts were stimulated both chemically and physically by PRP and light, respectively. Cell migration, proliferation, morphology, gene expressions and reactive oxygen species (ROS) activity were evaluated in-vitro. Laminin and collagen 4 expressions that are important for extracellular matrix (ECM) formation, and PDGF (Platelet-derived growth factor) and VEGF (Vascular endothelial growth factor) expressions that are important for vascularization significantly increased in the presence of both PRP and light. Besides, PRP and light improved cell migration in 3D core-and shell model synergistically. Hydrogen peroxide content decreased in both PRP and light, indicating inhibition of ROS production. It was concluded that the stimulation of platelets with light in the NIR has a great potential to use for both platelets activation and stimulation of fibroblasts. As a result, an effective therapy can be developed for chronic wounds by using scaffold-based 3D systems together with PRP and photostimulation.


Assuntos
Quitosana , Plasma Rico em Plaquetas , Proliferação de Células , Quitosana/química , Fibroblastos , Gelatina/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA