Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carcinogenesis ; 31(5): 766-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19843643

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs that, in general, negatively regulate gene expression. They have been identified in various tumor types, showing that different sets of miRNAs are usually deregulated in different cancers. Some miRNA genes harboring CpG islands undergo methylation-mediated silencing, a characteristic of many tumor suppressor genes. To identify such miRNAs in hepatocellular carcinoma (HCC), we first examined the methylation status of 43 loci containing CpG islands around 39 mature miRNA genes in a panel of HCC cell lines and non-cancerous liver tissues as controls. Among 11 miRNA genes frequently methylated in HCC cell lines but not in non-cancerous liver tissues, three miRNA genes, i.e. miR-124, miR-203 and miR-375, were selected as silenced miRNAs through CpG-island methylation by comparing methylation and expression status and evaluating restored expression after treatment with 5-aza-2'-deoxycytidine. In primary tumors of HCC with paired non-tumorous liver tissues, only miR-124 and miR-203 showed frequent tumor-specific methylation, and their expression status was inversely correlated with methylation status. Ectopic expression of miR-124 or miR-203 in HCC cells lacking their expression inhibited cell growth, with direct downregulation of possible targets, cyclin-dependent kinase 6 (CDK6), vimentin (VIM), SET and MYND domain containing 3 (SMYD3) and IQ motif containing GTPase activating protein 1 (IQGAP1) or ATP-binding cassette, subfamily E, member 1 (ABCE1), respectively. Our results suggest that miR-124 and miR-203 are novel tumor-suppressive miRNAs for HCC epigenetically silenced and activating multiple targets during hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/etiologia , Inativação Gênica , Genes Supressores de Tumor , Neoplasias Hepáticas/etiologia , MicroRNAs/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ilhas de CpG , Metilação de DNA , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/fisiologia
2.
Carcinogenesis ; 30(7): 1139-46, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19423649

RESUMO

Although we have identified two putative targets, ATF3 and CENPF, for a frequently gained/amplified region around 1q32-q41 in esophageal squamous cell carcinoma (ESCC), it is possible that other amplification targets remain to be identified. In this study, we tested whether SET and MYND domain-containing protein 2 (SMYD2), located between those two genes and encoding a lysine methyltransferase for histone H3K36 and p53K370 that regulates transcription and inhibits transactivation activity, respectively, acts as a cancer-promoting gene through activation/overexpression in ESCC. Frequent overexpression of SMYD2 messenger RNA and protein was observed in KYSE150 cells with remarkable amplification at 1q32-41.1 and other ESCC cell lines (11/43 lines, 25.6%). Overexpression of SMYD2 protein was frequently detected in primary tumor samples of ESCC (117/153 cases, 76.5%) as well and significantly correlated with gender, venous invasion, the pT category in the tumor-lymph node-metastases classification and status of recurrence. Patients with SMYD2-overexpressing tumors had a worse overall rate of survival than those with non-expressing tumors, and SMYD2 positivity was independently associated with a worse outcome in the multivariate analysis. Knockdown of SMYD2 expression inhibited and ectopic overexpression of SMYD2 promoted the proliferation of ESCC cells in a TP53 mutation-independent but SMYD2 expression-dependent manner. These findings suggest that SMYD2 plays an important role in tumor cell proliferation through its activation/overexpression and highlight its usefulness as a prognosticator and potential therapeutic target in ESCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA