Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 8(13): 2607-2617, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32124885

RESUMO

Respiratory syncytial virus (RSV) is one of the most common viral pathogens. It is especially dangerous for newborns and young children. In some cases it could lead to severe bronchiolitis, pneumonia with hospitalization or even a lethal outcome. Despite decades of investigation of RSV biology, effective and safe therapeutics are still under development. Certain natural peptides have been found to exhibit antiviral activity against respiratory viruses, but their implementation is limited by low stability in biological media. One of the current approaches to enhance the peptide therapeutic opportunities is chemical synthesis of peptide dendrimers with hyperbranched structures. Taking into account the recent data of bioactive cationic and helical regions of natural peptides and the structure features of nucleolin identified as an RSV cellular receptor, the main goal of this study was to design relatively short linear and dendrimeric cationic peptides and to test their antiviral activity against RSV. As a result 3 linear cationic peptides and 4 peptide dendrimers were synthesized and compared with known LL-37 (cathelicidin family) and anti-F0 monoclonal antibodies in terms of cytotoxicity and antiviral activity. Their affinity to the supposed molecular target - nucleolin (C23) - was estimated in silico by molecular docking analysis. Four synthesized peptides demonstrated a cytotoxic effect, two of them were even more cytotoxic than LL-37, which could be explained by a combination of a high amount of positive charge and amphipathicity. Contrariwise, non-hydrophobic dendrimer peptides did not exhibit cytotoxicity in mammalian cells in the studied concentration range. Two of the seven synthesized peptides, LTP (dendrimer) and SA-35 (linear), used in this study had a stronger antiviral effect than natural peptide LL-37, and three others showed slightly lower activity than anti-F0 monoclonal antibodies. The data obtained in this study suggest that evenly distributed positive charge, and low or medium amphipathicity play a key role in the antiviral activity of the studied peptides. Moreover, the calculated free energy values of the peptide/nucleolin complex for the most active peptides supported the idea that the peptide ability of nucleolin interaction promotes the anti-RSV properties of the molecules.


Assuntos
Antivirais/farmacologia , Dendrímeros/farmacologia , Desenho de Fármacos , Peptídeos/farmacologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/química , Macaca mulatta , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/química , Propriedades de Superfície
2.
Org Biomol Chem ; 16(43): 8181-8190, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30357248

RESUMO

One of the urgent problems of gene therapy is the search for effective transfection methods. Synthetic cationic peptides (CPs) are considered to be one of the most promising approaches for intracellular transport of oligonucleotides. Almost unlimited possibilities of the architectural design of CPs (linear and cyclic structures with a variation of chirality as well as dendrimers) make CPs an effective tunable carrier in this field. Cationic peptide dendrimers (PDs), as a relatively new direction, have significant advantages as gene delivery vehicles by virtue of non-natural ε-amide bonds that significantly increase their resistance to proteolysis. Moreover they also possess much lower cytotoxicity than linear peptides, which is crucial for the potential clinical application of CPs. In a further development of oligonucleotide delivery systems, we have synthesized a collection of 14 CPs, including linear peptides, lipopeptides and PDs. Their activity was evaluated by transfection of 293T cells with plasmids containing reporter genes encoding luciferase or a green fluorescent protein. The obtained results demonstrated that the greatest activity was exhibited by PDs, particularly LTP, an arginine-rich peptide dendrimer, which possesses low cytotoxic and hemolytic activity. The peptide exhibited high cell-penetrating activity, confirmed by fast dissipation of the membrane potential of cells probed by dis-C3-(5). The quantitative analysis of labelled LTP in tissue samples of mice revealed that the Cy5-LTP/siRNA complexes have a reasonable tropism to lung tissues.


Assuntos
DNA/química , DNA/genética , Dendrímeros/química , Portadores de Fármacos/química , Peptídeos/química , Transfecção , Sequência de Aminoácidos , Animais , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacocinética , Peptídeos/farmacologia , Plasmídeos/genética , Distribuição Tecidual
3.
Pharm Dev Technol ; 23(4): 334-342, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27681534

RESUMO

Novel method for the coating of positively charged liposomes with modified chitosan was elaborated. Liposomes were prepared by stepwise extrusion through inorganic membranes (Anotop) of 0.2 and 0.1 µm pore sizes. Chitosan derivatives were synthesized via the Ugi multicomponent reaction. Several series of liposomal compositions were produced and their properties were compared in terms of particle size, polydispersity index (PDI), zeta potential and stability. The effect of various additives was investigated and the optimal composition of the lipid film was determined. The addition of the uncharged fatty esters allowed the diameter of the liposomes obtained by extrusion to be reduced to 145-150 nm with a PDI of 0.13-0.15. The prepared liposomes were loaded with the novel antiviral drug Triazavirin and used to determine the release profile. Triazavirin was included into liposome layer as a salt with biocompatible choline derivatives of limiting fatty acids. The appropriate lipid composition was used for the preparation of a larger quantity of liposomes coated by modified chitosan. It was shown that an appropriate combination of liposomes and polysaccharide layer potentially extended colloidal stability by up to 3 months and exhibited broad functional capabilities for surface modification.


Assuntos
Antivirais/administração & dosagem , Azóis/administração & dosagem , Quitosana/análogos & derivados , Lipossomos/química , Triazinas/administração & dosagem , Antivirais/química , Azóis/química , Materiais Revestidos Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Tamanho da Partícula , Propriedades de Superfície , Triazinas/química , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA