Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6780, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514661

RESUMO

Cancer diseases constitute one of the most significant societal challenges. In this paper, we introduce a novel histopathological dataset for prostate cancer detection. The proposed dataset, consisting of over 2.6 million tissue patches extracted from 430 fully annotated scans, 4675 scans with assigned binary diagnoses, and 46 scans with diagnoses independently provided by a group of histopathologists can be found at https://github.com/michalkoziarski/DiagSet . Furthermore, we propose a machine learning framework for detection of cancerous tissue regions and prediction of scan-level diagnosis, utilizing thresholding to abstain from the decision in uncertain cases. The proposed approach, composed of ensembles of deep neural networks operating on the histopathological scans at different scales, achieves 94.6% accuracy in patch-level recognition and is compared in a scan-level diagnosis with 9 human histopathologists showing high statistical agreement.


Assuntos
Redes Neurais de Computação , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Aprendizado de Máquina , Neoplasias da Próstata/diagnóstico por imagem , Patologistas
2.
IEEE Trans Neural Netw Learn Syst ; 31(8): 2818-2831, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31247563

RESUMO

Learning from imbalanced data is among the most popular topics in the contemporary machine learning. However, the vast majority of attention in this field is given to binary problems, while their much more difficult multiclass counterparts are relatively unexplored. Handling data sets with multiple skewed classes poses various challenges and calls for a better understanding of the relationship among classes. In this paper, we propose multiclass radial-based oversampling (MC-RBO), a novel data-sampling algorithm dedicated to multiclass problems. The main novelty of our method lies in using potential functions for generating artificial instances. We take into account information coming from all of the classes, contrary to existing multiclass oversampling approaches that use only minority class characteristics. The process of artificial instance generation is guided by exploring areas where the value of the mutual class distribution is very small. This way, we ensure a smart oversampling procedure that can cope with difficult data distributions and alleviate the shortcomings of existing methods. The usefulness of the MC-RBO algorithm is evaluated on the basis of extensive experimental study and backed-up with a thorough statistical analysis. Obtained results show that by taking into account information coming from all of the classes and conducting a smart oversampling, we can significantly improve the process of learning from multiclass imbalanced data.

3.
PLoS One ; 14(10): e0224194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31661495

RESUMO

In the world, in which acceptance and the identification with social communities are highly desired, the ability to predict the evolution of groups over time appears to be a vital but very complex research problem. Therefore, we propose a new, adaptable, generic, and multistage method for Group Evolution Prediction (GEP) in complex networks, that facilitates reasoning about the future states of the recently discovered groups. The precise GEP modularity enabled us to carry out extensive and versatile empirical studies on many real-world complex / social networks to analyze the impact of numerous setups and parameters like time window type and size, group detection method, evolution chain length, prediction models, etc. Additionally, many new predictive features reflecting the group state at a given time have been identified and tested. Some other research problems like enriching learning evolution chains with external data have been analyzed as well.


Assuntos
Algoritmos , Redes Comunitárias , Simulação por Computador , Modelos Teóricos , Características de Residência , Humanos , Apoio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA