Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862506

RESUMO

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

2.
Biophys J ; 122(18): 3704-3721, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37301982

RESUMO

Adherent filopodia are elongated finger-like membrane protrusions, extending from the edges of diverse cell types and participating in cell adhesion, spreading, migration, and environmental sensing. The formation and elongation of filopodia are driven by the polymerization of parallel actin filaments, comprising the filopodia cytoskeletal core. Here, we report that adherent filopodia, formed during the spreading of cultured cells on galectin-8-coated substrates, tend to change the direction of their extension in a chiral fashion, acquiring a left-bent shape. Cryoelectron tomography examination indicated that turning of the filopodia tip to the left is accompanied by the displacement of the actin core bundle to the right of the filopodia midline. Reduction of the adhesion to galectin-8 by treatment with thiodigalactoside abolished this filopodia chirality. By modulating the expression of a variety of actin-associated filopodia proteins, we identified myosin-X and formin DAAM1 as major filopodia chirality promoting factors. Formin mDia1, actin filament elongation factor VASP, and actin filament cross-linker fascin were also shown to be involved. Thus, the simple actin cytoskeleton of filopodia, together with a small number of associated proteins are sufficient to drive a complex navigation process, manifested by the development of left-right asymmetry in these cellular protrusions.


Assuntos
Actinas , Pseudópodes , Actinas/metabolismo , Forminas/metabolismo , Pseudópodes/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo
3.
Nat Commun ; 14(1): 1037, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823145

RESUMO

Migrasomes are newly discovered cell organelles forming by local swelling of retraction fibers. The migrasome formation critically depends on tetraspanin proteins present in the retraction fiber membranes and is modulated by the membrane tension and bending rigidity. It remained unknown how and in which time sequence these factors are involved in migrasome nucleation, growth, and stabilization, and what are the possible intermediate stages of migrasome biogenesis. Here using live cell imaging and a biomimetic system for migrasomes and retraction fibers, we reveal that migrasome formation is a two-stage process. At the first stage, which in biomimetic system is mediated by membrane tension, local swellings largely devoid of tetraspanin 4 form on the retraction fibers. At the second stage, tetraspanin 4 molecules migrate toward and onto these swellings, which grow up to several microns in size and transform into migrasomes. This tetraspanin 4 recruitment to the swellings is essential for migrasome growth and stabilization. Based on these findings we propose that the major role of tetraspanin proteins is in stabilizing the migrasome structure, while the migrasome nucleation and initial growth stages can be driven by membrane mechanical stresses.


Assuntos
Membrana Celular , Tetraspaninas , Tetraspanina 28 , Estresse Mecânico
4.
Biomacromolecules ; 24(1): 98-108, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36469950

RESUMO

Intrinsically disordered peptide amphiphiles (IDPAs) present a novel class of synthetic conjugates that consist of short hydrophilic polypeptides anchored to hydrocarbon chains. These hybrid polymer-lipid block constructs spontaneously self-assemble into dispersed nanoscopic aggregates or ordered mesophases in aqueous solution due to hydrophobic interactions. Yet, the possible sequence variations and their influence on the self-assembly structures are vast and have hardly been explored. Here, we measure the nanoscopic self-assembled structures of four IDPA systems that differ by their amino acid sequence. We show that permutations in the charge pattern along the sequence remarkably alter the headgroup conformation and consequently alter the pH-triggered phase transitions between spherical, cylindrical micelles and hexagonal condensed phases. We demonstrate that even a single amino acid mutation is sufficient to tune structural transitions in the condensed IDPA mesophases, while peptide conformations remain unfolded and disordered. Furthermore, alteration of the peptide sequence can render IDPAs to become susceptible to enzymatic cleavage and induce enzymatically activated phase transitions. These results hold great potential for embedding multiple functionalities into lipid nanoparticle delivery systems by incorporating IDPAs with the desired properties.


Assuntos
Micelas , Peptídeos , Peptídeos/química , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Água/química
5.
Biophys J ; 122(11): 1974-1984, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203355

RESUMO

Tubular networks of the endoplasmic reticulum (ER) are dynamic structures whose steady-state conformations are maintained by a balance between the persistent generation and vanishing of the network elements. While factors producing the ER tubules and intertubular junctions have been investigated, the mechanisms behind their elimination remained unknown. Here, we addressed the ER ring closure, the process resulting in the tubule and junction removal through constriction of the network unit cells into junctional knots followed by the knot remodeling into regular junctions. We considered the ring closure to be driven by the tension existing in ER membranes. We based our consideration on the notion of Gibbs' thermodynamic tension and reviewed its relationship to other tension definitions used in the literature. We modeled, computationally, the structures of the junctional knots containing internal nanopores and analyzed their tension dependence. We analyzed the process of the pore sealing through membrane fission resulting in the formation of regular junctions. Considering the hemi-fission as the rate-limiting stage of the fission reaction, we evaluated the membrane tensions guaranteeing the spontaneous character of the pore sealing. We concluded that feasible membrane tensions explain all stages of the ER ring closure.


Assuntos
Retículo Endoplasmático
6.
Nat Rev Mol Cell Biol ; 24(1): 63-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35918535

RESUMO

Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.


Assuntos
Organelas , Proteínas , Membranas/metabolismo , Proteínas/metabolismo , Organelas/metabolismo , Membrana Celular/metabolismo , Endocitose , Clatrina/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(43): e2208993119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252000

RESUMO

Multiple membrane-shaping and remodeling processes are associated with tetraspanin proteins by yet unknown mechanisms. Tetraspanins constitute a family of proteins with four transmembrane domains present in every cell type. Prominent examples are tetraspanin4 and CD9, which are required for the fundamental cellular processes of migrasome formation and fertilization, respectively. These proteins are enriched in curved membrane structures, such as cellular retraction fibers and oocyte microvilli. The factors driving this enrichment are, however, unknown. Here, we revealed that tetraspanin4 and CD9 are curvature sensors with a preference for positive membrane curvature. To this end, we used a biomimetic system emulating membranes of cell retraction fibers and oocyte microvilli by membrane tubes pulled out of giant plasma membrane vesicles with controllable membrane tension and curvature. We developed a simple thermodynamic model for the partitioning of curvature sensors between flat and tubular membranes, which allowed us to estimate the individual intrinsic curvatures of the two proteins. Overall, our findings illuminate the process of migrasome formation and oocyte microvilli shaping and provide insight into the role of tetraspanin proteins in membrane remodeling processes.


Assuntos
Oócitos , Tetraspaninas , Membrana Celular/metabolismo , Microvilosidades/metabolismo , Oócitos/metabolismo , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo
8.
Nat Commun ; 13(1): 3697, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760780

RESUMO

Membrane budding entails forces to transform flat membrane into vesicles essential for cell survival. Accumulated studies have identified coat-proteins (e.g., clathrin) as potential budding factors. However, forces mediating many non-coated membrane buddings remain unclear. By visualizing proteins in mediating endocytic budding in live neuroendocrine cells, performing in vitro protein reconstitution and physical modeling, we discovered how non-coated-membrane budding is mediated: actin filaments and dynamin generate a pulling force transforming flat membrane into Λ-shape; subsequently, dynamin helices surround and constrict Λ-profile's base, transforming Λ- to Ω-profile, and then constrict Ω-profile's pore, converting Ω-profiles to vesicles. These mechanisms control budding speed, vesicle size and number, generating diverse endocytic modes differing in these parameters. Their impact is widespread beyond secretory cells, as the unexpectedly powerful functions of dynamin and actin, previously thought to mediate fission and overcome tension, respectively, may contribute to many dynamin/actin-dependent non-coated-membrane buddings, coated-membrane buddings, and other membrane remodeling processes.


Assuntos
Actinas , Endocitose , Actinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Dinaminas/metabolismo
9.
Sci Rep ; 12(1): 16, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996899

RESUMO

Networks, whose junctions are free to move along the edges, such as two-dimensional soap froths and membrane tubular networks of endoplasmic reticulum are intrinsically unstable. This instability is a result of a positive tension applied to the network elements. A paradigm of networks exhibiting stable polygonal configurations in spite of the junction mobility, are networks formed by bundles of Keratin Intermediate Filaments (KIFs) in live cells. A unique feature of KIF networks is a, hypothetically, negative tension generated in the network bundles due to an exchange of material between the network and an effective reservoir of unbundled filaments. Here we analyze the structure and stability of two-dimensional networks with mobile three-way junctions subject to negative tension. First, we analytically examine a simplified case of hexagonal networks with symmetric junctions and demonstrate that, indeed, a negative tension is mandatory for the network stability. Another factor contributing to the network stability is the junction elastic resistance to deviations from the symmetric state. We derive an equation for the optimal density of such networks resulting from an interplay between the tension and the junction energy. We describe a configurational degeneration of the optimal energy state of the network. Further, we analyze by numerical simulations the energy of randomly generated networks with, generally, asymmetric junctions, and demonstrate that the global minimum of the network energy corresponds to the irregular configurations.

10.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930828

RESUMO

Recent advances in super-resolution microscopy revealed the previously unknown nanoscopic level of organization of endoplasmic reticulum (ER), one of the most vital intracellular organelles. Membrane nanostructures of 10- to 100-nm intrinsic length scales, which include ER tubular matrices, ER sheet nanoholes, internal membranes of ER exit sites (ERES), and ER transport intermediates, were discovered and imaged in considerable detail, but the physical factors determining their unique geometrical features remained unknown. Here, we proposed and computationally substantiated a common concept for mechanisms of all ER nanostructures based on the membrane intrinsic curvature as a primary factor shaping the membrane and ultra-low membrane tensions as modulators of the membrane configurations. We computationally revealed a common structural motif underlying most of the nanostructures. We predicted the existence of a discrete series of equilibrium configurations of ER tubular matrices and recovered the one corresponding to the observations and favored by ultra-low tensions. We modeled the nanohole formation as resulting from a spontaneous collapse of elements of the ER tubular network adjacent to the ER sheet edge and calculated the nanohole dimensions. We proposed the ERES membrane to have a shape of a super flexible membrane bead chain, which acquires random walk configurations unless an ultra-low tension converts it into a straight conformation of a transport intermediate. The adequacy of the proposed concept is supported by a close qualitative and quantitative similarity between the predicted and observed configurations of all four ER nanostructures.


Assuntos
Retículo Endoplasmático/metabolismo , Nanoestruturas/química , Retículo Endoplasmático/ultraestrutura
11.
J Am Chem Soc ; 143(30): 11879-11888, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310121

RESUMO

Amphiphilic molecules and their self-assembled structures have long been the target of extensive research due to their potential applications in fields ranging from materials design to biomedical and cosmetic applications. Increasing demands for functional complexity have been met with challenges in biochemical engineering, driving researchers to innovate in the design of new amphiphiles. An emerging class of molecules, namely, peptide amphiphiles, combines key advantages and circumvents some of the disadvantages of conventional phospholipids and block copolymers. Herein, we present new peptide amphiphiles composed of an intrinsically disordered peptide conjugated to two variants of hydrophobic dendritic domains. These molecules, termed intrinsically disordered peptide amphiphiles (IDPA), exhibit a sharp pH-induced micellar phase-transition from low-dispersity spheres to extremely elongated worm-like micelles. We present an experimental characterization of the transition and propose a theoretical model to describe the pH-response. We also present the potential of the shape transition to serve as a mechanism for the design of a cargo hold-and-release application. Such amphiphilic systems demonstrate the power of tailoring the interactions between disordered peptides for various stimuli-responsive biomedical applications.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Tensoativos/química , Concentração de Íons de Hidrogênio , Micelas , Tamanho da Partícula , Conformação Proteica
12.
Nat Commun ; 12(1): 568, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495454

RESUMO

The endoplasmic reticulum (ER) network consists of tubules with high membrane curvature in cross-section, generated by the reticulons and REEPs. These proteins have two pairs of trans-membrane (TM) segments, followed by an amphipathic helix (APH), but how they induce curvature is poorly understood. Here, we show that REEPs form homodimers by interaction within the membrane. When overexpressed or reconstituted at high concentrations with phospholipids, REEPs cause extreme curvature through their TMs, generating lipoprotein particles instead of vesicles. The APH facilitates curvature generation, as its mutation prevents ER network formation of reconstituted proteoliposomes, and synthetic L- or D-amino acid peptides abolish ER network formation in Xenopus egg extracts. In Schizosaccharomyces japonicus, the APH is required for reticulon's exclusive ER-tubule localization and restricted mobility. Thus, the TMs and APH cooperate to generate high membrane curvature. We propose that the formation of splayed REEP/reticulon dimers is responsible for ER tubule formation.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Animais , Membrana Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica , Mutação , Multimerização Proteica , Schizosaccharomyces , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
13.
Nat Commun ; 12(1): 495, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479215

RESUMO

Myomerger is a muscle-specific membrane protein involved in formation of multinucleated muscle cells by mediating the transition from the early hemifusion stage to complete fusion. Here, we considered the physical mechanism of the Myomerger action based on the hypothesis that Myomerger shifts the spontaneous curvature of the outer membrane leaflets to more positive values. We predicted, theoretically, that Myomerger generates the outer leaflet elastic stresses, which propagate into the hemifusion diaphragm and accelerate the fusion pore formation. We showed that Myomerger ectodomain indeed generates positive spontaneous curvature of lipid monolayers. We substantiated the mechanism by experiments on myoblast fusion and influenza hemagglutinin-mediated cell fusion. In both processes, the effects of Myomerger ectodomain were strikingly similar to those of lysophosphatidylcholine known to generate a positive spontaneous curvature of lipid monolayers. The control of post-hemifusion stages by shifting the spontaneous curvature of proximal membrane monolayers may be utilized in diverse fusion processes.


Assuntos
Membrana Celular/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Mioblastos/metabolismo , Algoritmos , Animais , Fusão Celular , Linhagem Celular , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Teóricos , Mioblastos/citologia , Células NIH 3T3
14.
Mol Biol Cell ; 32(3): 301-310, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263429

RESUMO

Anionic phospholipids can confer a net negative charge on biological membranes. This surface charge generates an electric field that serves to recruit extrinsic cationic proteins, can alter the disposition of transmembrane proteins and causes the local accumulation of soluble counterions, altering the local pH and the concentration of physiologically important ions such as calcium. Because the phospholipid compositions of the different organellar membranes vary, their surface charges are similarly expected to diverge. Yet, despite the important functional implications, remarkably little is known about the electrostatic properties of the individual organellar membranes. We therefore designed and implemented approaches to estimate the surface charges of the cytosolic membranes of various organelles in situ in intact cells. Our data indicate that the inner leaflet of the plasma membrane is most negative, with a surface potential of approximately -35 mV, followed by the Golgi complex > lysosomes > mitochondria ≈ peroxisomes > endoplasmic reticulum, in decreasing order.


Assuntos
Membrana Celular/fisiologia , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fosfolipídeos/fisiologia , Células RAW 264.7 , Eletricidade Estática
15.
Biophys J ; 119(1): 65-74, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32533940

RESUMO

Keratin intermediate filaments form dynamic intracellular networks, which span the entire cytoplasm and provide mechanical strength to the cell. The mechanical resilience of the keratin intermediate filament network itself is determined by filament bundling. The bundling process can be reproduced in artificial conditions in the absence of any specific cross-linking proteins, which suggests that it is driven by generic physical forces acting between filaments. Here, we suggest a detailed model for bundling of keratin intermediate filaments based on interfilament electrostatic and hydrophobic interactions. It predicts that the process is limited by an optimal bundle thickness, which is determined by the electric charge of the filaments, the number of hydrophobic residues in the constituent keratin polypeptides, and the extent to which the electrolyte ions are excluded from the bundle interior. We evaluate the kinetics of the bundling process by considering the energy barrier a filament has to overcome for joining a bundle.


Assuntos
Filamentos Intermediários , Queratinas , Citoesqueleto/metabolismo , Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Cinética , Eletricidade Estática
16.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328645

RESUMO

Caveolae are an abundant and characteristic surface feature of many vertebrate cells. The uniform shape of caveolae is characterized by a bulb with consistent curvature connected to the plasma membrane (PM) by a neck region with opposing curvature. Caveolae act in mechanoprotection by flattening in response to increased membrane tension, and their disassembly influences the lipid organization of the PM. Here, we review evidence for caveolae as a specialized lipid domain and speculate on mechanisms that link changes in caveolar shape and/or protein composition to alterations in specific lipid species. We propose that high membrane curvature in specific regions of caveolae can enrich specific lipid species, with consequent changes in their localization upon caveolar flattening. In addition, we suggest how changes in the association of lipid-binding caveolar proteins upon flattening of caveolae could allow release of specific lipids into the bulk PM. We speculate that the caveolae-lipid system has evolved to function as a general stress-sensing and stress-protective membrane domain.


Assuntos
Cavéolas/metabolismo , Gotículas Lipídicas/metabolismo , Lipídeos/química , Estresse Oxidativo , Animais , Humanos
17.
Nat Cell Biol ; 21(10): 1301, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31435030

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Philos Trans R Soc Lond B Biol Sci ; 374(1779): 20180228, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31431172

RESUMO

Podosomes are a singular category of integrin-mediated adhesions important in the processes of cell migration, matrix degradation and cancer cell invasion. Despite a wealth of biochemical studies, the effects of mechanical forces on podosome integrity and dynamics are poorly understood. Here, we show that podosomes are highly sensitive to two groups of physical factors. First, we describe the process of podosome disassembly induced by activation of myosin-IIA filament assembly. Next, we find that podosome integrity and dynamics depends upon membrane tension and can be experimentally perturbed by osmotic swelling and deoxycholate treatment. We have also found that podosomes can be disrupted in a reversible manner by single or cyclic radial stretching of the substratum. We show that disruption of podosomes induced by osmotic swelling is independent of myosin-II filaments. The inhibition of the membrane sculpting protein, dynamin-II, but not clathrin, resulted in activation of myosin-IIA filament formation and disruption of podosomes. The effect of dynamin-II inhibition on podosomes was, however, independent of myosin-II filaments. Moreover, formation of organized arrays of podosomes in response to microtopographic cues (the ridges with triangular profile) was not accompanied by reorganization of myosin-II filaments. Thus, mechanical elements such as myosin-II filaments and factors affecting membrane tension/sculpting independently modulate podosome formation and dynamics, underlying a versatile response of these adhesion structures to intracellular and extracellular cues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.


Assuntos
Movimento Celular , Miosina não Muscular Tipo IIA/metabolismo , Podossomos/metabolismo , Humanos , Células Tumorais Cultivadas/metabolismo
19.
Nat Cell Biol ; 21(8): 991-1002, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31371828

RESUMO

Migrasomes are recently discovered cellular organelles that form as large vesicle-like structures on retraction fibres of migrating cells. While the process of migrasome formation has been described before, the molecular mechanism underlying migrasome biogenesis remains unclear. Here, we propose that the mechanism of migrasome formation consists of the assembly of tetraspanin- and cholesterol-enriched membrane microdomains into micron-scale macrodomains, which swell into migrasomes. The major finding underlying the mechanism is that tetraspanins and cholesterol are necessary and sufficient for migrasome formation. We demonstrate the necessity of tetraspanins and cholesterol via live-cell experiments, and their sufficiency by generating migrasome-like structures in reconstituted membrane systems. We substantiate the mechanism by a theoretical model proposing that the key factor driving migrasome formation is the elevated membrane stiffness of the tetraspanin- and cholesterol-enriched macrodomains. Finally, the theoretical model was quantitatively validated by experimental demonstration of the membrane-stiffening effect of tetraspanin 4 and cholesterol.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Tetraspaninas/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Organelas/metabolismo
20.
Dev Cell ; 48(4): 523-538.e4, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30661987

RESUMO

Caveolae, flask-shaped pits covered by caveolin-cavin coats, are abundant features of the plasma membrane of many cells. Besides appearing as single-membrane indentations, caveolae are organized as superstructures in the form of rosette-like clusters, whose mechanism of assembly and biological functions have been elusive. Here, we propose that clustering of caveolae in mature muscle cells is driven by forces originating from the elastic energy of membrane-bending deformations and membrane tension. We substantiate this mechanism by computational modeling, which recovers the unique shapes observed for the most ubiquitous caveolar clusters. We support the agreement between the calculated and observed configurations by electron tomography of caveolar clusters. The model predicts the experimentally assessable dependence of caveolar clustering on membrane tension and on the degree of the caveolar coat assembly. We reveal a difference in conformation and, possibly, in function and formation mechanism between caveolar clusters of muscle cells and of adipocytes.


Assuntos
Adipócitos/metabolismo , Cavéolas/metabolismo , Proteínas de Membrana/metabolismo , Células Musculares/metabolismo , Animais , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA