Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 50(2): 114-127, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789487

RESUMO

Inactivation of Cytochrome P450 (CYP450) enzymes can lead to significant increases in exposure of comedicants. The majority of reported in vitro to in vivo extrapolation (IVIVE) data have historically focused on CYP3A, leaving the assessment of other CYP isoforms insubstantial. To this end, the utility of human hepatocytes (HHEP) and human liver microsomes (HLM) to predict clinically relevant drug-drug interactions was investigated with a focus on CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6. Evaluation of IVIVE for CYP2B6 was limited to only weak inhibition. A search of the University of Washington Drug-Drug Interaction Database was conducted to identify a clinically relevant weak, moderate, and strong inhibitor for selective substrates of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6, resulting in 18 inhibitors for in vitro characterization against 119 clinical interaction studies. Pooled human hepatocytes and HLM were preincubated with increasing concentrations of inhibitors for designated timepoints. Time dependent inhibition was detected in HLM for four moderate/strong inhibitors, suggesting that some optimization of incubation conditions (i.e., lower protein concentrations) is needed to capture weak inhibition. Clinical risk assessment was conducted by incorporating the in vitro derived kinetic parameters maximal rate of enzyme inactivation (min-1) (kinact) and concentration of inhibitor resulting in 50% of the maximum enzyme inactivation (KI) into static equations recommended by regulatory authorities. Significant overprediction was observed when applying the basic models recommended by regulatory agencies. Mechanistic static models, which consider the fraction of metabolism through the impacted enzyme, using the unbound hepatic inlet concentration lead to the best overall prediction accuracy with 92% and 85% of data from HHEPs and HLM, respectively, within twofold of the observed value. SIGNIFICANCE STATEMENT: Coupling time-dependent inactivation parameters derived from pooled human hepatocytes and human liver microsomes (HLM) with a mechanistic static model provides an easy and quantitatively accurate means to determine clinical drug-drug interaction risk from in vitro data. Optimization is needed to evaluate time-dependent inhibition (TDI) for weak and moderate inhibitors using HLM. Recommendations are made with respect to input parameters for in vitro to in vivo extrapolation (IVIVE) of TDI with non-CYP3A enzymes using available data from HLM and human hepatocytes.


Assuntos
Citocromo P-450 CYP2D6 , Microssomos Hepáticos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/metabolismo
2.
Drug Metab Dispos ; 49(9): 743-749, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34162687

RESUMO

Aldehyde oxidase (AOX) is a soluble, cytosolic enzyme that metabolizes various N-heterocyclic compounds and organic aldehydes. It has wide tissue distribution with highest levels found in liver, kidney, and lung. Human clearance projections of AOX substrates by in vitro assessments in isolated liver fractions (cytosol, S9) and even hepatocytes have been largely underpredictive of clinical outcomes. Various hypotheses have been suggested as to why this is the case. One explanation is that extrahepatic AOX expression contributes measurably to AOX clearance and is at least partially responsible for the often observed underpredictions. Although AOX expression has been confirmed in several extrahepatic tissues, activities therein and potential contribution to overall human clearance have not been thoroughly studied. In this work, the AOX enzyme activity using the S9 fractions of select extrahepatic human tissues (kidney, lung, vasculature, and intestine) were measured using carbazeran as a probe substrate. Measured activities were scaled to a whole-body clearance using best-available parameters and compared with liver S9 fractions. Here, the combined scaled AOX clearance obtained from the kidney, lung, vasculature, and intestine is very low and amounted to <1% of liver. This work suggests that AOX metabolism from extrahepatic sources plays little role in the underprediction of activity in human. One of the notable outcomes of this work has been the first direct demonstration of AOX activity in human vasculature. SIGNIFICANCE STATEMENT: This work demonstrates aldehyde oxidase (AOX) activity is measurable in a variety of extrahepatic human tissues, including vasculature, yet activities and potential contributions to human clearance are relatively low and insignificant when compared with the liver. Additionally, the modeling of the tissue-specific in vitro kinetic data suggests that AOX may be influenced by the tissue it resides in and thus show different affinity, activity, and modified activity over time.


Assuntos
Aldeído Oxidase/metabolismo , Vasos Sanguíneos/enzimologia , Intestinos/enzimologia , Rim/enzimologia , Pulmão/enzimologia , Aldeídos/metabolismo , Correlação de Dados , Ensaios Enzimáticos/métodos , Compostos Heterocíclicos/metabolismo , Humanos , Fígado/enzimologia , Taxa de Depuração Metabólica , Distribuição Tecidual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA