Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(7): 962-969, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465308

RESUMO

Dicobalt hexacarbonyl 5-alkynyl furopyrimidine nucleoside analogs, with 4-methylphenyl (p-tolyl) and 4-pentylphenyl substituents attached at the C-6 base position, designed in the form of ribose acetyl esters, were synthesized (42-96%). Attached at the C-5 position were propargyl alcohol, its methyl ether and acetate derivatives, butynol, and the 4-methylphenyl- (p-tolyl) and 4-pentylphenyl-substituted alkynyl groups, which were coordinated to a dicobalt hexacarbonyl unit. The structure of 5-(3-acetoxyprop-1-yn-1-yl)-6-p-tolyl-2'-deoxyribofuranosyl-furo[2,3-d]pyrimidin-2-one was determined by X-ray crystallography. Density functional theory calculations performed on the corresponding derivative yielded geometric parameters for the dicobalt hexacarbonyl adduct of this ligand. The cytotoxic activity of each of dicobalt modified nucleosides on cancer cells of different phenotypes was determined in vitro. The investigated compounds showed antiproliferative effects with median inhibitory concentration (IC50) values in the ranges of 14-90 and 9-50 µM for HeLa and K562 cells, respectively. The formation of reactive oxygen species in the presence of modified nucleosides was determined in K562 cells. The results indicate that the mechanism of action for the studied compounds may be related to the induction of oxidative stress.

2.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35892900

RESUMO

The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients' stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 µM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38- subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs.

3.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919224

RESUMO

Based on previously identified dicarboximides with significant anticancer and immunomodulatory activities, a series of 26 new derivatives were designed and synthesized by the Diels-Alder reaction between appropriate diene and maleimide or hydroxymaleimide moieties. The resulting imides were functionalized with alkanolamine or alkylamine side chains and subsequently converted to their hydrochlorides. The structures of the obtained compounds were confirmed by 1H and 13C NMR and by ESI MS spectral analysis. Their cytotoxicity was evaluated in human leukemia (K562, MOLT4), cervical cancer (HeLa), and normal endothelial cells (HUVEC). The majority of derivatives exhibited high to moderate cytotoxicity and induced apoptosis in K562 cells. Microarray gene profiling demonstrated upregulation of proapoptotic genes involved in receptor-mediated and mitochondrial cell death pathways as well as antiapoptotic genes involved in NF-kB signaling. Selected dicarboximides activated JNK and p38 kinases in leukemia cells, suggesting that MAPKs may be involved in the regulation of apoptosis. The tested dicarboximides bind to DNA as assessed by a plasmid DNA cleavage protection assay. The selected dicarboximides offer new scaffolds for further development as anticancer drugs.


Assuntos
Apoptose , Leucemia/tratamento farmacológico , Transdução de Sinais , Succinimidas/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Cultivadas , Células Endoteliais , Feminino , Células HeLa , Humanos , Células K562 , Leucemia/metabolismo , Leucemia/fisiopatologia , MAP Quinase Quinase Quinases , Proteínas Quinases/metabolismo , Succinimidas/síntese química , Succinimidas/uso terapêutico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/fisiopatologia
4.
Colloids Surf B Biointerfaces ; 201: 111598, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33618081

RESUMO

This study was aimed towards the development of a novel microfluidic approach for the preparation of (co)polymeric and hybrid nanoparticles (NPs) composed of (co)polymers/tannic acid (TA) in the microfluidic flow-focusing glass-capillary device. The MiliQ water was used as water phase, whereas the organic phase was composed of poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) homopolymers and (co)polymers with different proportion of comonomers which were prepared via enzymatic polymerization that allows avoiding the usage of potentially toxic catalyst. To prepare hybrid NPs, TA was additionally added to the organic phase. Subsequently, as a result of mixing between these distinct phases in microfluidic channels, the nanoprecipitation in the form of spherical NPs occurs. The size of NPs was tuned over the range of 140-230 nm by controlling phase flow rates and the composition of NPs. Moreover, the release studies of the encapsulated anticancer drug doxorubicin (DOX) demonstrated that the drug release is greatly influenced by the (co)polymers composition, their molecular weight, NPs size, and the presence of TA. The antitumor activities of the (co)polymeric and hybrid NPs toward breast cancer cells (MCF-7) were tested in vitro. Among all tested formulation, the NPs composed of PCL/TA most efficiently inhibit the cell proliferation of MCF-7 cells, most importantly, their efficiency was higher than free DOX. The proposed strategy may provide an efficient alternative for the construction of nanocarriers with great potential in anticancer therapy.


Assuntos
Nanopartículas , Neoplasias , Doxorrubicina/farmacologia , Humanos , Microfluídica , Poliésteres , Polímeros , Taninos
5.
Dalton Trans ; 49(46): 16791-16800, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174575

RESUMO

Functionalized carbon nanotubes are interesting, promising and unique delivery systems for anticancer drugs, which are now in the spotlight of nanomedicine. Connecting nanotubes with anticancer drugs or new compounds with anticancer properties aims at improving their stability, efficiency and reduces the toxic side effects of cancer treatment. In our research, we are interested in connecting functionalized MWCNTs-NH2 with [InH][trans-RuCl4(In)2], (KP1019) which is one of the most promising anticancer ruthenium(iii) drug candidates, known mainly as a cytotoxic agent for the treatment of platinum-resistant colorectal cancers. As a result of the amidation of MWCNTs (1), MWCNTs-NH2 (2) were obtained. Then, they were modified with [InH][RuCl4(In)2] (4) and the nanosystem [MWCNT-NH3+][RuCl4(In)2-] (3) was obtained. The characterization of the resulting products was performed using IR, Raman spectroscopy, thermal gravimetric, XRD, STEM-EDX, ESI-MS, ICP-MS, and XPS analyses. The cytotoxic activity has been tested on human lung carcinoma (A549), chronic myelogenous leukemia (K562) and human cervix carcinoma (HeLa) cells which showed the higher toxicity of the nanosystem than the ruthenium complex.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Indazóis/química , Nanotubos de Carbono/química , Rutênio/química , Células A549 , Antineoplásicos/efeitos adversos , Complexos de Coordenação/efeitos adversos , Células HeLa , Humanos
6.
Molecules ; 25(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244705

RESUMO

A series of 3-benzylidenechrmanones 1, 3, 5, 7, 9 and their spiropyrazoline analogues 2, 4, 6, 8, 10 were synthesized. X-ray analysis confirms that compounds 2 and 8 crystallize in a monoclinic system in P21/n space groups with one and three molecules in each asymmetric unit. The crystal lattice of the analyzed compounds is enhanced by hydrogen bonds. The primary aim of the study was to evaluate the anti-proliferative potential of 3-benzylidenechromanones and their spiropyrazoline analogues towards four cancer cell lines. Our results indicate that parent compounds 1 and 9 with a phenyl ring at C2 have lower cytotoxic activity against cancer cell lines than their spiropyrazolines analogues. Analysis of IC50 values showed that the compounds 3 and 7 exhibited higher cytotoxic activity against cancer cells, being more active than the reference compound (4-chromanone or quercetin). The results of this study indicate that the incorporation of a pyrazoline ring into the 3-arylideneflavanone results in an improvement of the compounds' activity and therefore it may be of use in the search of new anticancer agents. Further analysis allowed us to demonstrate the compounds to have a strong inhibitory effect on the cell cycle. For instance, compounds 2, 10 induced 60% of HL-60 cells to be arrested in G2/M phase. Using a DNA-cleavage protection assay we also demonstrated that tested compounds interact with DNA. All compounds at the concentrations corresponding to cytotoxic properties are not toxic towards red blood cells, and do not contribute to hemolysis of RBCs.


Assuntos
Cromonas/química , Cromonas/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
7.
Biomolecules ; 9(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487824

RESUMO

We identified novel dicarboximides that were selectively cytotoxic towards human leukemia cells. Using chemical and biological methods, we characterized the biological activity, identified cellular protein targets and defined the mechanism of action of the test dicarboximides. The reported IC50 values (concentration required to reduce cell survival fraction to 50% of control) of selected dicarboximides were similar or lower than IC50 of registered anticancer drugs, for example cytarabine, sorafenib, irinotecan. Test compounds induced apoptosis in chronic myelogenous (K562) and acute lymphoblastic (MOLT-4) leukemia cells by activation of receptor and mitochondrial apoptotic pathways and increased the expression of proapoptotic genes (BAX, NOXA, HTRA2, TNFRSF10B, ESRRBL1). Selected dicarboximides displayed immunomodulatory activity and downregulated IKZF1 and IKZF3 transcription factors in K562 and MOLT-4 leukemia cells. ATP-binding cassette protein 50 (ABC50) was identified as a target for dicarboximides. Cancer cells with knocked down ABC50 showed increased resistance to dicarboximides. Based on the structure of dicarboximides and thalidomide, novel proteolysis-targeting chimeras (PROTACs) were synthesized and used as tools to downregulate ABC50 in leukemia cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Fatores Imunológicos/farmacologia , Talidomida/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Células K562 , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/síntese química , Talidomida/química , Células Tumorais Cultivadas
8.
Molecules ; 24(16)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405214

RESUMO

A series of variously functionalized selenium-containing compounds were purposely synthesized and evaluated against a panel of cancer cell lines. Most of the compounds showed an interesting cytotoxicity profile with compound 5 showing a potent activity on MCF7 cells. The ethyl amino derivative 5 acts synergistically with cis-platin and inhibits the GST enzyme with a potency that well correlates with the cytotoxicity observed in MCF7 cells. A computational analysis suggests a possible binding mode on the GST enzyme. As the main outcome of the present study, the ethyl amino derivative 5 emerged as a valid lead compound for further, future developments.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos , Glutationa Transferase/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Compostos Organosselênicos , Compostos de Selênio , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Células K562 , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Compostos de Selênio/síntese química , Compostos de Selênio/química , Compostos de Selênio/farmacologia
9.
Dalton Trans ; 48(28): 10689-10702, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31241117

RESUMO

Two mononuclear ruthenium(iii) mer- and fac-isomers of the formula [RuCl3(PPh3)(dmpbt)] (where PPh3 = triphenylphosphine, dmpbt = 2-(3,5-dimethylpyrazoll-yl)benzothiazole) have been synthesised from the reaction of [RuCl3(PPh3)3] with a bidentate ligand - dmpbt. Appropriate reaction conditions allowed obtaining the two isomers separately without separation techniques. X-ray crystallography has determined the crystal and molecular structures of the new complexes. mer-Ru(iii) (1) crystallised in the monoclinic P2(1)/n group, and fac-Ru(iii) (2, 2') in the triclinic P1[combining macron] space group. The composition of the ruthenium coordination sphere was confirmed and characterised using spectroscopic techniques (FT-IR, UV-vis and EPR), elemental analysis and mass spectrometry (MS-FAB). The structures of the complexes obtained were analysed using X-ray and other spectroscopic methods (IR and UV-vis). The electrochemical properties of the ligand and the complex compound were identified using cyclic voltammetry, determining the potential and charge of faradaic processes. Both isomers are redox active and display quasi-reversible metal centered redox processes for the Ru(iii)/Ru(ii) pair. Moreover, preliminary tests of their biological activity were performed. The cytotoxicity of these compounds has been tested for human lung carcinoma (A549), chronic myelogenous leukemia (K562), human cervix carcinoma (HeLa) cells, acute lymphoblastic leukemia (MOLT-4), human breast adenocarcinoma cell line (MCF-7) and normal human umbilical vein endothelial cells (HUVEC). The ability to induce apoptosis has been demonstrated in caspase 3/7 activity assay. In addition, the lipophilicity of both isomers was described by a partition coefficient, log P, values of which were estimated by the shake-flask method. The interesting and promising preliminary results of the biological and chemical activities of the new octahedral mer/fac Ru(iii) complexes motivate further in vitro and in vivo studies.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Complexos de Coordenação/farmacologia , Compostos Organofosforados/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiazóis/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas Eletroquímicas , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organofosforados/química , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Molecules ; 24(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003438

RESUMO

The results of our previous research indicated that some derivatives of benzofurans, particularly halogeno-derivatives, are selectively toxic towards human leukemia cells. Continuing our work with this group of compounds we here report new data on the synthesis as well as regarding the physico-chemical and biological characterization of fourteen new derivatives of benzofurans, including six brominated compounds. The structures of all new compounds were established by spectroscopic methods (1H- and, 13C-NMR, ESI MS), and elemental analyses. Their cytotoxicity was evaluated against K562 (leukemia), MOLT-4 (leukemia), HeLa (cervix carcinoma), and normal cells (HUVEC). Five compounds (1c, 1e, 2d, 3a, 3d) showed significant cytotoxic activity against all tested cell lines and selectivity for cancer cell lines. The SAR analysis (structure-activity relationship analysis) indicated that the presence of bromine introduced to a methyl or acetyl group that was attached to the benzofuran system increased their cytotoxicity both in normal and cancer cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzofuranos/síntese química , Benzofuranos/farmacologia , Antineoplásicos/química , Benzofuranos/química , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50
11.
Anticancer Agents Med Chem ; 19(3): 375-388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30465514

RESUMO

BACKGROUND: Novel derivatives of benzo[b]furan were found to be highly toxic towards human chronic myelogenous (K562), acute myelogenous (HL-60) and acute lymphoblastic (MOLT-4) leukemia cells. OBJECTIVE: The objective was the characterization of the biological activity of novel benzofurans (influence on apoptosis, mitogen-activated protein kinases and on the cell cycle). Cellular protein(s) targeted by test benzofurans and mechanism of action were identified. METHODS: The methods utilized in the study were chemical synthesis, fluorescence assays, flow cytometry, gene expression by DNA microarray and real-time RT-PCR, western blotting, cytotoxicity assays, pull-down assay, mass spectroscopy, in vitro polymerization of tubulin, molecular docking. RESULTS: 1,1'-[3-(bromomethyl)-5,6- dimethoxy-1-benzofuran-2,7-diyldiethanone (1) and methyl 4-bromo-6- (dibromoacetyl)-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate (2) induced apoptosis in K562 and MOLT-4 cells. The profiling of gene expression revealed that 1 and 2 increased the expression of proapoptotic genes involved in both receptor (TNFRSF 10A, TNFRSF 10B, CASP8) and mitochondrial (BAX, BID, NOXA, APAF1) pathways of apoptosis. Test benzo[b]furans activated c-Jun N-terminal kinase (JNK) and p38 kinase in K562 cells. Tubulin was identified as a protein target for benzo[b]furans in pull-down experiments with biotinylated 2. Test benzo[b]furans inhibited polymerization of tubulin monomers in vitro, decreased the level of cellular microtubules and arrested cells in a G2/M phase. Molecular docking suggests that benzo[b]furans 1 and 2 bind to tubulin via colchicine binding pocket and the complex is stabilized mainly by hydrophobic interactions. CONCLUSION: Novel benzo[b]furans with anti-microtubule activity were identified. They induce apoptosis in cancer cells and cause G2/M cell cycle arrest. Biological activity of 1 and 2 makes them potential lead compounds for development as anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzofuranos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Regulação para Cima/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fase G2/efeitos dos fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
12.
Acta Crystallogr C Struct Chem ; 74(Pt 10): 1138-1145, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30284980

RESUMO

This article presents the synthesis of three new 4-thiopyrimidine derivatives obtained from ethyl 4-methyl-2-phenyl-6-sulfanylpyrimidine-5-carboxylate as the starting material, namely, ethyl 4-[(4-chlorobenzyl)sulfanyl]-6-methyl-2-phenylpyrimidine-5-carboxylate, C21H19ClN2O2S, (2), {4-[(4-chlorobenzyl)sulfanyl]-6-methyl-2-phenylpyrimidin-5-yl}methanol, C19H17ClN2OS, (3), and 4-[(4-chlorobenzyl)sulfanyl]-5,6-dimethyl-2-phenylpyrimidine, C19H17ClN2S, (4), which vary in the substituent at the 5-position of the pyrimidine ring. The compounds were characterized by 1H NMR, 13C NMR, IR and mass spectroscopies, and also elemental analysis. The molecular structures were further studied by single-crystal X-ray diffraction. Compound (2) crystallizes in the space group P-1 with one molecule in the asymmetric unit, whereas compounds (3) and (4) crystallize in the space group P21/c with two and one molecule, respectively, in their asymmetric units. The conformation of each molecule is best defined by the dihedral angles formed between the pyrimidine ring and the planes of the two aryl substituents attached at the 2- and 4-positions. The only structural difference between the three compounds is the substituent at the 5-position of the pyrimidine ring, but they present significantly different features in the hydrogen-bond interactions. Compound (2) displays a one-dimensional chain formed by hydrogen bonds and the chains are further extended into a two-dimensional network. Molecules of (3) and (4) generate one-dimensional chains formed through intermolecular interactions. The study examines the cytotoxicity of compounds (3) and (4) against Human umbilical vein endothelial cells (HUVEC) and HeLa, K562 and CFPAC cancer cell lines. The presence of the hydroxymethyl and methyl groups in (3) and (4), respectively, offers an interesting new insight into the structures and behaviour of these derivatives. Compound (4) was found to be nontoxic against CFPAC and HUVEC; however, it shows weak activity against the HeLa and K563 cell lines. The presence of a hydroxy group in (3) significantly increases its cytotoxicity towards both, i.e. the cancer (HeLa, K562 and CFPAC) and normal (HUVEC) cell lines.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligação de Hidrogênio , Células K562 , Modelos Moleculares , Pirimidinas/síntese química
13.
ChemistryOpen ; 7(3): 237-247, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531887

RESUMO

Reactions of dicobalt octacarbonyl [Co2(CO)8] with 2'-deoxy-5-oxopropynyluridines and related compounds gave dicobalt hexacarbonyl nucleoside complexes (83-31 %). The synthetic outcomes were confirmed by X-ray structure determination of dicobalt hexacarbonyl 2'-deoxy-5-(4-hydroxybut-1-yn-1-yl)uridine, which exhibits intermolecular hydrogen bonding between a modified base and ribose. The electronic structure of this compound was characterized by the DFT calculations. The growth inhibition of HeLa and K562 cancer cell lines by organometallic nucleosides was examined and compared to that by alkynyl nucleoside precursors. Coordination of the dicobalt carbonyl moiety to the 2'-deoxy-5-alkynyluridines led to a significant increase in the cytotoxic potency. The cobalt compounds displayed antiproliferative activities with median inhibitory values (IC50) in the range of 20 to 80 µm for the HeLa cell line and 18 to 30 µm for the K562 cell line. Coordination of an acetyl-substituted cobalt nucleoside was expanded by using the 1,1-bis(diphenylphosphino)methane (dppm) ligand, which exhibited cytotoxicity at comparable levels. The formation of reactive oxygen species in the presence of cobalt compounds was determined in K562 cells. The results indicate that the mechanism of action for most antiproliferative cobalt compounds may be related to the induction of oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA