Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 560(7716): E1, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29875404

RESUMO

In this Brief Communications Arising Reply, the affiliation for author P. H. Templer was incorrectly listed as 'Department of Ecology & Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA' instead of 'Department of Biology, Boston University, Boston, Massachusetts 02215, USA'. This has been corrected online.

3.
Nature ; 540(7631): 104-108, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27905442

RESUMO

The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.


Assuntos
Atmosfera/química , Ciclo do Carbono , Carbono/análise , Geografia , Aquecimento Global , Solo/química , Bases de Dados Factuais , Ecossistema , Retroalimentação , Modelos Estatísticos , Reprodutibilidade dos Testes , Temperatura
4.
Environ Monit Assess ; 164(1-4): 337-48, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19365607

RESUMO

The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals.


Assuntos
Biodiversidade , Europa (Continente) , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA