Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Aesthet Dermatol ; 17(3): 48-51, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495545

RESUMO

Background: Hyaluronic acid (HA) is a unique molecule of the extracellular matrix with multiple biological activities. In skin, HA plays an essential role as a humectant, capable of binding up to 1,000 times its mass with water, providing skin with moisture and viscoelastic properties. HA concentration and synthesis decrease significantly in aging skin, due to exogenous and endogenous factors, including photoaging and HA metabolism. A key driver for HA degradation and reduced concentration is mediated via induction of reactive oxygen species (ROS) and other free radicals. Objective: In this study, we evaluate antioxidant ingredients essential in the development of next-generation HA-based topical formulations aimed at leveraging HA's ability to maximize anti-aging properties. Methods: Two antioxidants, glycine saponin (Glycine soja germ extract) and glycyrrhetinic acid (enoxolone), were evaluated for stimulation of endogenous HA production and inhibition of endogenous hyaluronidase activity, respectively. Results: The antioxidant glycine saponin induced endogenous HA synthesis in fibroblasts, while the antioxidant glycyrrhetinic acid decreased the degradation rate of HA by 54 percent. Conclusion: While HA has been included in numerous topical skin products, critical aspects of HA metabolism, especially in aging skin, have often been overlooked, including decreases in HA synthesis with increasing age, and increases in HA degradation mediated by exogenously induced reactive oxygen species and free radicals and increased enzymatic degradation by endogenous hyaluronidases. Here, we describe a unique approach to inclusion of two antioxidants essential for the development of the next generation of antioxidant complex-based topical skin formulations to limit the signs of aging skin.

2.
Int J Cosmet Sci ; 46(2): 297-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38013225

RESUMO

OBJECTIVE: Advanced glycation end-products (AGEs) represent a large group of compounds generated by a non-enzymatic reaction between reducing sugars and amino groups. The formation and accumulation of AGEs in the skin lead to protein crosslinking, dermal stiffening and yellowing, which ultimately contribute to cutaneous ageing. Amino acids have been described to exhibit anti-glycation effects. The objective of this study was to understand the inhibitory role of the amino acid derivative N-acetyl-L-hydroxyproline (NAHP) as an anti-glycation active for human skin. METHODS: A cell-free assay investigating the inhibition of glycation of serum albumin by NAHP was used to determine the capability of NAHP to decrease AGE formation. Also, by assessing the amount of the AGE N-(carboxymethyl)lysine (CML) the anti-glycation abilities of NAHP were investigated utilizing dot blot analysis. The improvement of cell-matrix interaction by NAHP was determined in vitro using a glycated fibroblast-populated collagen lattice (FPCL) dermis model. In skin biopsies, AGE autofluorescence was determined after treatment with NAHP and/or glucose ex vivo. RESULTS: NAHP significantly and dose-dependently inhibited levels of AGEs, which were induced by the glycation of a protein solution. This decrease could be visualized by showing that the brownish appearance as well as the AGE-specific fluorescence of glucose-treated samples were reduced after the application of increasing amounts of NAHP. Also, CML formation was dose-dependently inhibited by NAHP. In FPCLs, the contractile capacity of fibroblasts was significantly disturbed after glycation. This could be prevented by the addition of NAHP. Compared to glyoxal-treated samples, the co-application of NAHP significantly decreased the diameter as well as the weight of glycated FPCLs. Ex vivo application of glucose to skin explants showed a higher AGE fluorescence signal compared to control explants. Co-treatment with NAHP and glucose decreased the level of AGE fluorescence in comparison to glucose-treated explants. CONCLUSION: These data provide clear evidence that under glycation stress conditions treatment with NAHP inhibited AGE formation in vitro and ex vivo and prevented the loss of cellular contractile forces in a glycated dermis model. Thus, NAHP obviously provides a beneficial treatment option to counteract AGE-related changes in human skin such as dermal stiffening and yellowish skin appearance.


OBJECTIF: Les produits finis de glycation avancée (AGE) représentent un grand groupe de composés générés par une réaction non enzymatique entre des sucres réduits et des groupes amino. La formation et l'accumulation d'AGE dans la peau entraînent une réticulation protéique, un raidissement de la peau et un jaunissement, qui finissent par contribuer au vieillissement cutané. Les acides aminés ont été décrits comme ayant des effets d'anti­glycation. L'objectif de cette étude était de comprendre le rôle inhibiteur du dérivé d'acide aminé N­acétyl­L­hydroxyproline (NAHP) en tant qu'actif anti­glycation pour la peau humaine. MÉTHODES: Un test acellulaire étudiant l'inhibition de la glycation de l'albumine sérique par la NAHP a été utilisé pour déterminer la capacité de la NAHP à diminuer la formation d'AGE. En évaluant la quantité de l'AGE N­(carboxyméthyl)lysine (CML), les capacités d'anti­glycation de la NAHP ont également été étudiées à l'aide d'une analyse par dot blot. L'amélioration de l'interaction cellule­matrice par la NAHP a été déterminée in vitro à l'aide d'un modèle de derme de lattices de collagène composées de fibroblastes glyqués. Dans des biopsies cutanées, l'autofluorescence des AGE a été déterminée après un traitement par NAHP et/ou glucose ex vivo. RÉSULTATS: La NAHP a inhibé de manière significative et dose­dépendante les taux d'AGE induits par la glycation d'une solution protéique. Cette diminution a pu être visualisée en montrant que l'aspect brunâtre ainsi que la fluorescence spécifique aux AGE des échantillons traités par glucose ont été réduits après l'application de quantités croissantes de NAHP. En outre, la formation de CML était inhibée de manière dose­dépendante par la NAHP. Dans des lattices de collagène composées de fibroblastes, la capacité contractile des fibroblastes était significativement perturbée après la glycation. Cela a pu être évité par l'ajout de NAHP. Par rapport aux échantillons traités au glyoxal, la co­application de NAHP a significativement réduit le diamètre ainsi que le poids des lattices de collagène composées de fibroblastes glyquées. L'application ex vivo de glucose sur les explants de peau a montré un signal de fluorescence des AGE plus élevé que les explants témoins. Le traitement concomitant par NAHP et glucose a réduit le niveau de fluorescence des AGE par rapport aux explants traités par glucose. CONCLUSION: Ces données fournissent des preuves évidentes que, dans des conditions de stress par glycation, le traitement par NAHP a inhibé la formation d'AGE in vitro et ex vivo, et a prévenu la perte des forces contractiles cellulaires dans un modèle de derme glyqué. Ainsi, la NAHP constitue manifestement une option de traitement bénéfique pour contrer les changements liés aux AGE dans la peau humaine, tels que le raidissement du derme et l'aspect jaunâtre de la peau.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Nitrosaminas , Humanos , Hidroxiprolina , Produtos Finais de Glicação Avançada/metabolismo , Envelhecimento , Glucose
3.
Oncotarget ; 7(45): 73414-73431, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27705917

RESUMO

Glioblastoma (GBM) is the most malignant brain tumor with very limited therapeutic options. Standard multimodal treatments, including surgical resection and combined radio-chemotherapy do not target the most aggressive subtype of glioma cells, brain tumor stem cells (BTSCs). BTSCs are thought to be responsible for tumor initiation, progression, and relapse. Furthermore, they have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT) thereby inducing tumor dissemination and chemo resistance. Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) on GBM cell cultures we provide evidence that the expression of well-known EMT activators of the ZEB, TWIST and SNAI families and EMT target genes N-cadherin and VIMENTIN is associated with aberrant choline metabolism. The cholinic phenotype is characterized by high intracellular levels of phosphocholine and total choline derivatives and was associated with malignancy in various cancers. Both genetic and pharmacological inhibition of the cardinal choline metabolism regulator choline kinase alpha (CHKα) significantly reduces the cell viability, invasiveness, clonogenicity, and expression of EMT associated genes in GBM cells. Moreover, in some cell lines synergetic cytotoxic effects were observed when combining the standard of care chemotherapeutic temozolomide with the CHKα inhibitor V-11-0711. Taken together, specific inhibition of the enzymatic activity of CHKα is a powerful strategy to suppress EMT which opens the possibility to target chemo-resistant BTSCs through impairing their mesenchymal transdifferentiation. Moreover, the newly identified EMT-oncometabolic network may be helpful to monitor the invasive properties of glioblastomas and the success of anti-EMT therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Colina/metabolismo , Transição Epitelial-Mesenquimal , Glioblastoma/metabolismo , Glioblastoma/patologia , Fenótipo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Colina Quinase/antagonistas & inibidores , Colina Quinase/genética , Colina Quinase/metabolismo , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Metabolismo Energético/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Temozolomida , Vimentina/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
4.
Biofactors ; 41(6): 383-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648450

RESUMO

Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity.


Assuntos
Antioxidantes/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Pele/efeitos dos fármacos , Ubiquinona/análogos & derivados , Administração Tópica , Antioxidantes/metabolismo , Linhagem Celular , Suplementos Nutricionais , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Pele/metabolismo , Pele/patologia , Ubiquinona/administração & dosagem , Ubiquinona/metabolismo
5.
J Cosmet Dermatol ; 10(4): 273-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22151935

RESUMO

BACKGROUND: The dermal extracellular matrix provides stability and structure to the skin. With increasing age, however, its major component collagen is subject to degeneration, resulting in a gradual decline in skin elasticity and progression of wrinkle formation. Previous studies suggest that the reduction in cellular energy contributes to the diminished synthesis of cutaneous collagen during aging. AIMS: To investigate the potential of topically applied creatine to improve the clinical signs of skin aging by stimulating dermal collagen synthesis in vitro and in vivo. PATIENTS/METHODS: Penetration experiments were performed with a pig skin ex vivo model. Effects of creatine on dermal collagen gene expression and procollagen synthesis were studied in vitro using cultured fibroblast-populated collagen gels. In a single-center, controlled study, 43 male Caucasians applied a face-care formulation containing creatine, guarana extract, and glycerol to determine its influence on facial topometric features. RESULTS: Cultured human dermal fibroblasts supplemented with creatine displayed a stimulation of collagen synthesis relative to untreated control cells both on the gene expression and at the protein level. In skin penetration experiments, topically applied creatine rapidly reached the dermis. In addition, topical in vivo application of a creatine-containing formulation for 6 weeks significantly reduced the sagging cheek intensity in the jowl area as compared to baseline. This result was confirmed by clinical live scoring, which also demonstrated a significant reduction in crow's feet wrinkles and wrinkles under the eyes. CONCLUSIONS: In summary, creatine represents a beneficial active ingredient for topical use in the prevention and treatment of human skin aging.


Assuntos
Colágeno/biossíntese , Creatina/farmacocinética , Creatina/uso terapêutico , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Colágeno/genética , Creatina/farmacologia , Elasticidade/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Glicerol/farmacologia , Glicerol/uso terapêutico , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Paullinia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pró-Colágeno/biossíntese , Absorção Cutânea , Estatísticas não Paramétricas , Suínos
6.
J Cosmet Dermatol ; 10(1): 15-23, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21332911

RESUMO

BACKGROUND: The decrease in firmness is a hallmark of skin aging. Accelerated by chronic sun exposure, fundamental changes occur within the dermal extracellular matrix over the years, mainly impairing the collagenous network. AIMS: Based on the qualitative and quantitative assessment of skin firmness, in vitro and in vivo studies were carried out to elucidate the effects of topical folic acid and creatine to counteract this age-dependent reduction in the amount of collagen. PATIENTS/METHODS: Topical application of a commercially available formulation containing folic acid and creatine was performed to study effects on skin firmness in vivo using cutometric analysis. Imaging and quantification of collagen density were carried out using multiphoton laser scanning microscopy (MPLSM). To investigate the effects of these compounds on collagen gene expression, procollagen synthesis, and collagen fibril organization, complementary in vitro studies on cultured fibroblast-populated collagen gels were carried out. RESULTS: The underlying structural changes in the collagen network of young and aged sun-exposed facial skin in vivo were visualized by MPLSM. Topical application of a folic acid- and creatine-containing formulation significantly improved firmness of mature skin in vivo. Treatment of fibroblast-populated dermal equivalents with folic acid and creatine increased collagen gene expression and procollagen levels and improved collagen fiber density, suggesting that the in vivo effects are based on the overall improvement of the collagen metabolism. CONCLUSIONS: Employing MPLSM, dermal changes occurring in photo-aged human skin were visualized in an unprecedented manner and correlated to a loss of firmness. Treatment of aged skin with a topical formulation containing folic acid and creatine counteracted this age-dependent decline by exerting sustained effects on collagen metabolism. Our results support previous findings on the efficacy of these actives.


Assuntos
Colágeno/efeitos dos fármacos , Creatinina/farmacologia , Ácido Fólico/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Administração Tópica , Adulto , Idoso , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Elasticidade/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Microscopia/métodos , Pessoa de Meia-Idade , Pró-Colágeno/metabolismo , RNA Mensageiro/metabolismo , Pele/ultraestrutura , Luz Solar/efeitos adversos , Adulto Jovem
7.
New Phytol ; 163(1): 149-157, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33873791

RESUMO

• An in vitro system with micropropagated oaks (Quercus robur) and the ectomycorrhizal fungus Piloderma croceum, which is characterized by a delayed mycorrhiza formation, was used to identify plant transcripts upregulated in the premycorrhizal phase. • Complementary DNA (cDNA) populations of uninoculated roots and fungal mycelium were subtracted from a cDNA population of inoculated roots. Differential expression was confirmed by reverse Northern and 50 clones for different polypeptides were found to be up-regulated. Twenty-nine clones were investigated in more detail. • For approximately half of the cDNA fragments no homologies could be identified in databases. The residual fragments code for polypeptides with homologies to known proteins involved in signal perception and transmission, stress responses, metabolism and growth. • Since many of the identified genes have not yet been described in the context of symbiotic events, their potential roles during early phases of the recognition process are discussed.

8.
Pain ; 32(2): 173-183, 1988 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-3362555

RESUMO

A survey concerning common pain conditions and psychological distress was carried out among a probability sample of the adult enrollees of a large health maintenance organization in Seattle. The prevalence of pain in the prior six months was 41% for back pain; 26% for headache; 17% for abdominal pain; 12% for chest pain; and 12% for facial pain. Headache, abdominal and facial pain were less prevalent among older persons and more prevalent among females. We examined the temporal dimensions of these pain conditions, as well as intensity, treatment seeking, and activity limitation. The pain conditions were typically long standing, recurrent, of mild to moderate intensity, and usually did not limit activities. However, depending on the pain condition, 9-40% reported one or more days in the prior six months when they were unable to carry out their usual activities due to the pain problem. On average, persons with a pain condition had higher levels of anxiety, depression, and non-pain somatic symptoms as measured by the scales of the Symptom Checklist (SCL); poorer self-rating of health status; and more family stress compared to persons without a pain condition. Of these alternative measures of distress, the SCL somatization scale had the strongest independent association with pain. The increments in measures of anxiety, depression, and family stress with the presence of pain were greatest among persons with higher levels of non-pain somatic symptoms.


Assuntos
Dor/etiologia , Estresse Psicológico/complicações , Adolescente , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/psicologia , Probabilidade , Fatores Sexuais , Papel do Doente , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA