Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Clin Res Cardiol ; 113(5): 672-679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37847314

RESUMO

The sharing and documentation of cardiovascular research data are essential for efficient use and reuse of data, thereby aiding scientific transparency, accelerating the progress of cardiovascular research and healthcare, and contributing to the reproducibility of research results. However, challenges remain. This position paper, written on behalf of and approved by the German Cardiac Society and German Centre for Cardiovascular Research, summarizes our current understanding of the challenges in cardiovascular research data management (RDM). These challenges include lack of time, awareness, incentives, and funding for implementing effective RDM; lack of standardization in RDM processes; a need to better identify meaningful and actionable data among the increasing volume and complexity of data being acquired; and a lack of understanding of the legal aspects of data sharing. While several tools exist to increase the degree to which data are findable, accessible, interoperable, and reusable (FAIR), more work is needed to lower the threshold for effective RDM not just in cardiovascular research but in all biomedical research, with data sharing and reuse being factored in at every stage of the scientific process. A culture of open science with FAIR research data should be fostered through education and training of early-career and established research professionals. Ultimately, FAIR RDM requires permanent, long-term effort at all levels. If outcomes can be shown to be superior and to promote better (and better value) science, modern RDM will make a positive difference to cardiovascular science and practice. The full position paper is available in the supplementary materials.


Assuntos
Pesquisa Biomédica , Sistema Cardiovascular , Humanos , Gerenciamento de Dados , Reprodutibilidade dos Testes , Coração
3.
Commun Biol ; 6(1): 657, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344639

RESUMO

Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.


Assuntos
Cardiomiopatia Hipertrófica , Síndrome de Noonan , Proteínas Proto-Oncogênicas c-raf , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Mutação em Linhagem Germinativa , Miócitos Cardíacos/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/complicações , Síndrome de Noonan/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-raf/genética
4.
BMC Cardiovasc Disord ; 23(1): 232, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138228

RESUMO

BACKGROUND: ST-segment elevation myocardial infarction (STEMI) still causes significant mortality and morbidity despite best-practice revascularization and adjunct medical strategies. Within the STEMI population, there is a spectrum of higher and lower risk patients with respect to major adverse cardiovascular and cerebral events (MACCE) or re-hospitalization due to heart failure. Myocardial and systemic metabolic disorders modulate patient risk in STEMI. Systematic cardiocirculatory and metabolic phenotyping to assess the bidirectional interaction of cardiac and systemic metabolism in myocardial ischemia is lacking. METHODS: Systemic organ communication in STEMI (SYSTEMI) is an all-comer open-end prospective study in STEMI patients > 18 years of age to assess the interaction of cardiac and systemic metabolism in STEMI by systematically collecting data on a regional and systemic level. Primary endpoint will be myocardial function, left ventricular remodelling, myocardial texture and coronary patency at 6 month after STEMI. Secondary endpoint will be all-cause death, MACCE, and re-hospitalisation due to heart failure or revascularisation assessed 12 month after STEMI. The objective of SYSTEMI is to identify metabolic systemic and myocardial master switches that determine primary and secondary endpoints. In SYSTEMI 150-200 patients are expected to be recruited per year. Patient data will be collected at the index event, within 24 h, 5 days as well as 6 and 12 months after STEMI. Data acquisition will be performed in multilayer approaches. Myocardial function will be assessed by using serial cardiac imaging with cineventriculography, echocardiography and cardiovascular magnetic resonance. Myocardial metabolism will be analysed by multi-nuclei magnetic resonance spectroscopy. Systemic metabolism will be approached by serial liquid biopsies and analysed with respect to glucose and lipid metabolism as well as oxygen transport. In summary, SYSTEMI enables a comprehensive data analysis on the levels of organ structure and function alongside hemodynamic, genomic and transcriptomic information to assess cardiac and systemic metabolism. DISCUSSION: SYSTEMI aims to identify novel metabolic patterns and master-switches in the interaction of cardiac and systemic metabolism to improve diagnostic and therapeutic algorithms in myocardial ischemia for patient-risk assessment and tailored therapy. TRIAL REGISTRATION: Trial Registration Number: NCT03539133.


Assuntos
Doença da Artéria Coronariana , Insuficiência Cardíaca , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Estudos de Coortes , Estudos Prospectivos , Intervenção Coronária Percutânea/efeitos adversos , Doença da Artéria Coronariana/complicações , Insuficiência Cardíaca/etiologia , Resultado do Tratamento
5.
J Mol Cell Cardiol ; 173: 47-60, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150524

RESUMO

Diabetes mellitus type 2 is associated with adverse clinical outcome after myocardial infarction. To better understand the underlying causes we here investigated sarcomere protein function and its calcium-dependent regulation in the non-ischemic remote myocardium (RM) of diabetic mice (db/db) after transient occlusion of the left anterior descending coronary artery. Before and 24 h after surgery db/db and non-diabetic db/+ underwent magnetic resonance imaging followed by histological and biochemical analyses of heart tissue. Intracellular calcium transients and sarcomere function were measured in isolated cardiomyocytes. Active and passive force generation was assessed in skinned fibers and papillary muscle preparations. Before ischemia and reperfusion (I/R), beat-to-beat calcium cycling was depressed in diabetic cardiomyocytes. Nevertheless, contractile function was preserved owing to increased myofilament calcium sensitivity and higher responsiveness of myocardial force production to ß-adrenergic stimulation in db/db compared to db/+. In addition, protein kinase C activity was elevated in db/db hearts leading to strong phosphorylation of the titin PEVK region and increased titin-based tension of myofilaments. I/R impaired the function of whole hearts and RM sarcomeres in db/db to a larger extent than in non-diabetic db/+, and we identified several reasons. First, the amplitude and the kinetics of cardiomyocyte calcium transients were further reduced in the RM of db/db. Underlying causes involved altered expression of calcium regulatory proteins. Diabetes and I/R additively reduced phospholamban S16-phosphorylation by 80% (P < 000.1) leading to strong inhibition of the calcium ATPase SERCA2a. Second, titin stiffening was only observed in the RM of db/+, but not in the RM of db/db. Finally, db/db myofilament calcium sensitivity and force generation upon ß-adrenergic stimulation were no longer enhanced over db/+ in the RM. The findings demonstrate that impaired cardiomyocyte calcium cycling of db/db hearts is compensated by increased myofilament calcium sensitivity and increased titin-based stiffness prior to I/R. In contrast, sarcomere function of the RM 24 h after I/R is poor because both these compensatory mechanisms fail and myocyte calcium handling is further depressed.


Assuntos
Diabetes Mellitus Experimental , Infarto do Miocárdio , Camundongos , Animais , Conectina/metabolismo , Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Reperfusão , Adrenérgicos , Contração Miocárdica
6.
Front Physiol ; 13: 914296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846001

RESUMO

Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.

7.
J Sci Food Agric ; 102(12): 5098-5110, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34231208

RESUMO

BACKGROUND: In the European Union proteins for food are largely animal based, consisting of meat and dairy products. Almost all soy but also a larger part of pulses and cereals consumed in the European Union are used for animal nutrition. While livestock is an important source of proteins, it also creates substantial environmental impacts. The food and feed system is closely linked to the planetary and health boundaries and a transformation to healthy diets will require substantial dietary shifts towards healthy foods, such as nuts, fruits, vegetables and legumes. RESULTS: Extrudated vegetable meat alternatives consisting of protein combined with amaranth or buckwheat flour and a vegetable milk alternative made from lentil proteins were shown to have the potential to generate significantly less environmental impact than their animal-based counterparts in most of the environmental indicators examined, taking into account both functional units (mass and protein content). The underlying field-to-fork life cycle assessment models include several variants for both plant and animal foods. The optimized plant-based foods show a clear potential for improvement in the environmental footprints. CONCLUSIONS: Development of higher processed and therefore higher performing products is crucial for appealing to potential user groups beyond dedicated vegetarians and vegans and ultimately achieving market expansion. The Protein2Food project showed that prototypes made from European-grown legumes and pseudocereals are a valuable source for high-quality protein foods, and despite being substantially processed they could help reduce the environmental impact of food consumption. © 2021 Society of Chemical Industry.


Assuntos
Dieta , Proteínas de Plantas , Ração Animal , Animais , Laticínios , Estágios do Ciclo de Vida , Carne , Verduras
8.
Sci Rep ; 11(1): 21134, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702928

RESUMO

The sarcomere protein titin is a major determinant of cardiomyocyte stiffness and ventricular distensibility. The constant mechanical stress on titin requires well-controlled protein quality control, the exact mechanisms of which have not yet been fully elucidated. Here, we analyzed E3-ligases potentially responsible for cardiac titin ubiquitination and specifically studied the involvement of the autophagosomal system in titin degradation. Pharmacological inhibition of autophagy and the proteasome in cultured primary rat cardiomyocytes significantly elevated titin ubiquitination and increased titin degradation. Using in-vitro pull down assays we identified binding of E3-ligases MuRF1-3, CHIP and Fbx32 to several titin domains. Immunofluorescence analysis showed sarcomeric localization of the E3-ligases. siRNA-mediated knock-down of the E3-ligases MuRF-1, -3 and a combination of CHIP/Fbx32 significantly reduced autophagy-related titin ubiquitination, whereas knock-down of MuRF-2 and -3 reduced proteasome-related titin ubiquitination. We demonstrated that the proteasomal and the autophagosomal-lysosomal system participate in degradation of the titin filament. We found that ubiquitination and degradation of titin are partially regulated by E3-ligases of the MuRF family. We further identified CHIP and Fbx32 as E3-ligases involved in titin ubiquitination.


Assuntos
Autofagia , Conectina , Complexo de Endopeptidases do Proteassoma , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitina , Animais , Conectina/genética , Conectina/metabolismo , Técnicas de Silenciamento de Genes , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Wistar , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(39): 24545-24556, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929035

RESUMO

The relationship between oxidative stress and cardiac stiffness is thought to involve modifications to the giant muscle protein titin, which in turn can determine the progression of heart disease. In vitro studies have shown that S-glutathionylation and disulfide bonding of titin fragments could alter the elastic properties of titin; however, whether and where titin becomes oxidized in vivo is less certain. Here we demonstrate, using multiple models of oxidative stress in conjunction with mechanical loading, that immunoglobulin domains preferentially from the distal titin spring region become oxidized in vivo through the mechanism of unfolded domain oxidation (UnDOx). Via oxidation type-specific modification of titin, UnDOx modulates human cardiomyocyte passive force bidirectionally. UnDOx also enhances titin phosphorylation and, importantly, promotes nonconstitutive folding and aggregation of unfolded domains. We propose a mechanism whereby UnDOx enables the controlled homotypic interactions within the distal titin spring to stabilize this segment and regulate myocardial passive stiffness.


Assuntos
Miocárdio/química , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Animais , Elasticidade , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/química , Oxirredução , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética
10.
Sci Rep ; 10(1): 4888, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184434

RESUMO

Although fibrosis depicts a reparative mechanism, maladaptation of the heart due to excessive production of extracellular matrix accelerates cardiac dysfunction. The anthraquinone Rhein was examined for its anti-fibrotic potency to mitigate cardiac fibroblast-to-myofibroblast transition (FMT). Primary human ventricular cardiac fibroblasts were subjected to hypoxia and characterized with proteomics, transcriptomics and cell functional techniques. Knowledge based analyses of the omics data revealed a modulation of fibrosis-associated pathways and cell cycle due to Rhein administration during hypoxia, whereas p53 and p21 were identified as upstream regulators involved in the manifestation of cardiac fibroblast phenotypes. Mechanistically, Rhein acts inhibitory on HDAC classes I/II as enzymatic inhibitor. Rhein-mediated cellular effects were linked to the histone deacetylase (HDAC)-dependent protein stabilization of p53 under normoxic but not hypoxic conditions. Functionally, Rhein inhibited collagen contraction, indicating anti-fibrotic property in cardiac remodeling. This was accompanied by increased abundance of SMAD7, but not SMAD2/3, and consistently SMAD-specific E3 ubiquitin ligase SMURF2. In conclusion, this study identifies Rhein as a novel potent direct HDAC inhibitor that may contribute to the treatment of cardiac fibrosis as anti-fibrotic agent. As readily available drug with approved safety, Rhein constitutes a promising potential therapeutic approach in the supplemental and protective intervention of cardiac fibrosis.


Assuntos
Antraquinonas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Adulto , Western Blotting , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Transcriptoma/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118532, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31421188

RESUMO

Cardiac aging affects the heart on the functional, structural, and molecular level and shares characteristic hallmarks with the development of chronic heart failure. Apart from age-dependent left ventricular hypertrophy and fibrosis that impairs diastolic function, diminished activity of cardiac protein-quality-control systems increases the risk of cytotoxic accumulation of defective proteins. Here, we studied the impact of cardiac aging on the sarcomeric protein titin by analyzing titin-based cardiomyocyte passive tension, titin modification and proteasomal titin turnover. We analyzed left ventricular samples from young (6 months) and old (20 months) wild-type mice and healthy human donor patients grouped according to age in young (17-50 years) and aged hearts (51-73 years). We found no age-dependent differences in titin isoform composition of mouse or human hearts. In aged hearts from mice and human we determined altered titin phosphorylation at serine residues S4010 and S4099 in the elastic N2B domain, but no significant changes in phosphorylation of S11878 and S12022 in the elastic PEVK region. Importantly, overall titin-based cardiomyocyte passive tension remained unchanged. In aged hearts, the calcium-activated protease calpain-1, which provides accessibility to ubiquitination by releasing titin from the sarcomere, showed decreased proteolytic activity. In addition, we observed a reduction in the proteasomal activities. Taken together, our data indicate that cardiac aging does not affect titin-based passive properties of the cardiomyocytes, but impairs protein-quality control, including titin, which may result in a diminished adaptive capacity of the aged myocardium.


Assuntos
Envelhecimento/genética , Conectina/genética , Hipertrofia Ventricular Esquerda/genética , Miócitos Cardíacos/metabolismo , Adolescente , Adulto , Idoso , Envelhecimento/patologia , Animais , Conectina/química , Feminino , Voluntários Saudáveis , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Musculares/química , Proteínas Musculares/genética , Miocárdio/química , Miocárdio/metabolismo , Miócitos Cardíacos/química , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Adulto Jovem
13.
Circ Res ; 124(10): 1433-1447, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30916618

RESUMO

RATIONALE: Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE: Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS: Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS: Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.


Assuntos
Matriz Extracelular/fisiologia , Hialuronan Sintases/deficiência , Ácido Hialurônico/biossíntese , Macrófagos/fisiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Cicatrização/fisiologia , Actinas/metabolismo , Animais , Apoptose , Comunicação Celular/fisiologia , Sobrevivência Celular , Microambiente Celular/fisiologia , Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/citologia , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia
14.
Biochim Biophys Acta Mol Basis Dis ; 1865(4): 822-830, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660684

RESUMO

Ischemic conditioning induces cardioprotection; the final infarct size following a myocardial ischemic event is reduced. However, whether ischemic conditioning has long-term beneficial effects on myocardial contractile function following such an ischemic event needs further elucidation. To date, ex vivo studies have shown that ischemic conditioning improves the contractile recovery of isolated ventricular papillary muscle or atrial trabeculae following simulated ischemia. However, in vivo animal studies and studies in patients undergoing elective cardiac surgery show conflicting results. At the subcellular level, it is known that ischemic conditioning improved energy metabolism, preserved mitochondrial respiration, ATP production, and Ca2+ homeostasis in isolated mitochondria from the myocardium. Ischemic conditioning also presents with post-translational modifications of proteins in the contractile machinery of the myocardium. The beneficial effects on myocardial contractile function need further elucidation. This article is part of a Special Issue entitled: The power of metabolism: Linking energy supply and demand to contractile function edited by Torsten Doenst, Michael Schwarzer and Christine Des Rosiers.


Assuntos
Pós-Condicionamento Isquêmico/métodos , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Animais , Cálcio/metabolismo , Humanos , Pós-Condicionamento Isquêmico/efeitos adversos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia
16.
Circ Heart Fail ; 11(6): e004133, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29853478

RESUMO

BACKGROUND: One of the first clinically detectable alterations in heart function in hypertrophic cardiomyopathy (HCM) is a decline in diastolic function. Diastolic dysfunction is caused by changes in intrinsic properties of cardiomyocytes or an increase in fibrosis. We investigated whether clinical and cellular parameters of diastolic function are different between male and female patients with HCM at the time of myectomy. METHODS AND RESULTS: Cardiac tissue from the interventricular septum of patients with HCM (27 women and 44 men) was obtained during myectomy preceded by echocardiography. At myectomy, female patients were 7 years older than male patients and showed more advanced diastolic dysfunction than men evident from significantly higher values for E/e' ratio, left ventricular filling pattern, tricuspid regurgitation velocity, and left atrial diameter indexed for body surface. Whereas most male patients (56%) showed mild (grade I) diastolic dysfunction, 50% of female patients showed grade III diastolic dysfunction. Passive tension in HCM cardiomyocytes was comparable with controls, and myofilament calcium sensitivity was higher in HCM compared with controls, but no sex differences were observed in myofilament function. In female patients with HCM, titin was more compliant, and more fibrosis was present compared with men. Differences between female and male patients with HCM remained significant after correction for age. CONCLUSIONS: Female patients with HCM are older at the time of myectomy and show greater impairment of diastolic function. Furthermore, left ventricular and left atrial remodeling is increased in women when corrected for body surface area. At a cellular level, HCM women showed increased compliant titin and a larger degree of interstitial fibrosis.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/patologia , Caracteres Sexuais , Adolescente , Adulto , Idoso , Cardiomiopatias/fisiopatologia , Cardiomiopatia Hipertrófica/fisiopatologia , Criança , Ecocardiografia/métodos , Feminino , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Adulto Jovem
17.
Circ Res ; 123(3): 342-355, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29760016

RESUMO

RATIONALE: Increased titin-dependent cardiomyocyte tension is a hallmark of heart failure with preserved ejection fraction associated with type-2 diabetes mellitus. However, the insulin-related signaling pathways that modify titin-based cardiomyocyte tension, thereby contributing to modulation of diastolic function, are largely unknown. OBJECTIVE: We aimed to determine how impaired insulin signaling affects titin expression and phosphorylation and thus increases passive cardiomyocyte tension, and whether metformin or neuregulin-1 (NRG-1) can correct disturbed titin modifications and increased titin-based stiffness. METHODS AND RESULTS: We used cardiac biopsies from human diabetic (n=23) and nondiabetic patients (n=19), cultured rat cardiomyocytes, left ventricular tissue from apolipoprotein E-deficient mice with streptozotocin-induced diabetes mellitus (n=12-22), and ZSF1 (obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid) rats (n=5-6) and analyzed insulin-dependent signaling pathways that modulate titin phosphorylation. Titin-based passive tension was measured using permeabilized cardiomyocytes. In human diabetic hearts, we detected titin hypophosphorylation at S4099 and hyperphosphorylation at S11878, suggesting altered activity of protein kinases; cardiomyocyte passive tension was significantly increased. When applied to cultured cardiomyocytes, insulin and metformin increased titin phosphorylation at S4010, S4099, and S11878 via enhanced ERK1/2 (extracellular signal regulated kinase 1/2) and PKCα (protein kinase Cα) activity; NRG-1 application enhanced ERK1/2 activity but reduced PKCα activity. In apolipoprotein E-deficient mice, chronic treatment of streptozotocin-induced diabetes mellitus with NRG-1 corrected titin phosphorylation via increased PKG (protein kinase G) and ERK1/2 activity and reduced PKCα activity, which reversed the diabetes mellitus-associated changes in titin-based passive tension. Acute application of NRG-1 to obese ZSF1 rats with type-2 diabetes mellitus reduced end-diastolic pressure. CONCLUSIONS: Mechanistically, we found that impaired cGMP-PKG signaling and elevated PKCα activity are key modulators of titin-based cardiomyocyte stiffening in diabetic hearts. We conclude that by restoring normal kinase activities of PKG, ERK1/2, and PKCα, and by reducing cardiomyocyte passive tension, chronic NRG-1 application is a promising approach to modulate titin properties in heart failure with preserved ejection fraction associated with type-2 diabetes mellitus.


Assuntos
Conectina/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Insulina/farmacologia , Miócitos Cardíacos/metabolismo , Neuregulina-1/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Animais , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Proteína Quinase C-alfa/metabolismo , Ratos , Ratos Zucker
18.
J Mol Cell Cardiol ; 119: 28-39, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29674140

RESUMO

Changes in the nonischemic remote myocardium of the heart contribute to left ventricular dysfunction after ischemia and reperfusion (I/R). Understanding the underlying mechanisms early after I/R is crucial to improve the adaptation of the viable myocardium to increased mechanical demands. Here, we investigated the role of myocyte Ca2+ handling in the remote myocardium 24 h after 60 min LAD occlusion. Cardiomyocytes isolated from the basal noninfarct-related parts of wild type mouse hearts demonstrated depressed beat-to-beat Ca2+ handling. The amplitude of the Ca2+ transients as well as the kinetics of Ca2+ transport were reduced by up to 25%. These changes were associated with impaired sarcomere contraction. While expression levels of Ca2+ regulatory proteins were unchanged in remote myocardium compared to the corresponding regions of sham-operated hearts, mobility shift analyses of phosphorylated protein showed 2.9 ±â€¯0.4-fold more unphosphorylated phospholamban (PLN) monomers, the PLN species that inhibits the Ca2+ ATPase SERCA2a (P ≤ 0.001). Phospho-specific antibodies revealed normal phosphorylation of PLN at T17 in remote myocardium, but markedly reduced phosphorylation at its PKA-dependent phosphorylation site, S16 (P ≤ 0.01). The underlying cause involved enhanced activity of protein phosphatases, particularly PP2A (P ≤ 0.01). In contrast, overall PKA activity was normal. The PLN interactome, as determined by co-immunoprecipitation and mass spectrometry, and the phosphorylation state of PKA targets other than PLN were also unchanged. Isoproterenol enhanced cellular Ca2+ cycling much stronger in remote myocytes than in healthy controls and improved sarcomere function. We conclude that the reduced phosphorylation state of PLN at S16 impairs myocyte Ca2+ cycling in the remote myocardium 24 h after I/R and contributes to contractile dysfunction.


Assuntos
Sinalização do Cálcio/genética , Infarto do Miocárdio/genética , Traumatismo por Reperfusão/genética , Disfunção Ventricular Esquerda/genética , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Humanos , Camundongos , Contração Miocárdica/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Proteína Fosfatase 2/genética , Traumatismo por Reperfusão/patologia , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Disfunção Ventricular Esquerda/fisiopatologia
20.
Am J Pathol ; 187(12): 2645-2658, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935576

RESUMO

Peripartum cardiomyopathy (PPCM) and dilated cardiomyopathy (DCM) show similarities in clinical presentation. However, although DCM patients do not recover and slowly deteriorate further, PPCM patients show either a fast cardiac deterioration or complete recovery. The aim of this study was to assess if underlying cellular changes can explain the clinical similarities and differences in the two diseases. We, therefore, assessed sarcomeric protein expression, modification, titin isoform shift, and contractile behavior of cardiomyocytes in heart tissue of PPCM and DCM patients and compared these with nonfailing controls. Heart samples from ischemic heart disease (ISHD) patients served as heart failure control samples. Passive force was only increased in PPCM samples compared with controls, whereas PPCM, DCM, and ISHD samples all showed increased myofilament Ca2+ sensitivity. Length-dependent activation was significantly impaired in PPCM compared with controls, no impairment was observed in ISHD samples, and DCM samples showed an intermediate response. Contractile impairments were caused by impaired protein kinase A (PKA)-mediated phosphorylation because exogenous PKA restored all parameters to control levels. Although DCM samples showed reexpression of EH-myomesin, an isoform usually only expressed in the heart before birth, PPCM and ISHD did not. The lack of EH-myomesin, combined with low PKA-mediated phosphorylation of myofilament proteins and increased compliant titin isoform, may explain the increase in passive force and blunted length-dependent activation of myofilaments in PPCM samples.


Assuntos
Cardiomiopatias/fisiopatologia , Cardiomiopatia Dilatada/fisiopatologia , Miócitos Cardíacos/patologia , Miofibrilas/patologia , Período Periparto , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA