Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Exp Dent Res ; 5(5): 541-550, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31687189

RESUMO

Obejective: To investigate the effect of increasing Strontium (Sr) concentrations on the growth and osteogenic behavior of human bone marrow stromal cells (BMSCs) from mesenchymal (i.e., fibula) and ectomesenchymal (i.e., mandible) embryonic origins. Materials and methods: Fibula and mandible BMSCs were cultured in media without (Ctrl) or with Sr in four diverse concentrations: Sr1, 11.3 × 10-3 mg/L, human seric physiological level; Sr2, 13 mg/L, human seric level after strontium ranelate treatment; Sr3, 130 mg/L, and Sr4, 360 mg/L. Proliferation rate (1, 3, and 7 days), osteogenic behavior (alkaline phosphatase [ALP] activity, 7 and 14 days; expression of osteogenic genes (ALP, osteopontin, and osteocalcin at 7, 14, and 21 days), and formation of mineralized nodules (14 and 21 days) of the BMSCs were assessed. Data was compared group- and period-wise using analysis of variance tests. Results: Fibula and mandible BMSCs cultured with Sr4 showed increased proliferation rate, and osteocalcin and osteopontin gene expression together with more evident formation of mineralized nodules, compared all other Sr concentrations. For both cell populations, Sr4 led to lower ALP activity, and ALP gene expression, compared with the other Sr concentrations. Conclusion: BMSCs from mesenchymal (i.e., fibula) and ectomesenchymal (i.e., mandible) embryonic origins showed increased cellular proliferation and osteogenic behavior when cultured with Sr4, in vitro.


Assuntos
Calcificação Fisiológica , Células-Tronco Mesenquimais/citologia , Mesoderma/citologia , Osteogênese , Estrôncio/farmacologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Pessoa de Meia-Idade , Osteocalcina/genética , Osteocalcina/metabolismo , Osteopontina/genética , Osteopontina/metabolismo
2.
J Oral Sci ; 60(1): 82-88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576580

RESUMO

A novel fast-setting calcium silicate cement with fluoride (CSC) has been developed for potential application in tooth crowns. This study compared the cytotoxicity of CSC compositions and a variety of dental materials. We tested CSC compositions (Protooth), MTA, Biodentine, Ketac Molar, Fuji II LC, Vitrebond, DeTrey Zinc, Dycal, and IRM, DMEM (negative control) and 1% NaOCl (positive control). After setting of cements for 24 h, specimens were immersed in DMEM for 24 h to obtain material elutes. The elutes were serially diluted in serum-free DMEM to obtain three dilutions. L929 mouse fibroblast cells (1 × 104 cells per well) were treated for 24 h with elute dilutions (n = 3). Cytotoxicity was determined using methyl-thiazolyl-tetrazolium assay in triplicate. CSC compositions, MTA, and Biodentine showed no significant reduction in cell viability compared to DMEM. There was no significant difference in cell viability, at any of three dilutions, between CSC compositions and either MTA or Biodentine. Cytotoxicity was significantly lower for CSC compositions than for Vitrebond, DeTrey Zinc, Dycal, IRM, and 1% NaOCl, at all three dilutions, and undiluted Fuji II LC elute. In contrast to resin-modified glass ionomers, zinc phosphate cements, Dycal, and IRM, the CSC compositions showed no cytotoxic potential.


Assuntos
Compostos de Cálcio/química , Sobrevivência Celular/efeitos dos fármacos , Colorimetria/métodos , Cimentos Dentários/química , Silicatos/química , Sais de Tetrazólio/química , Tiazóis/química , Animais , Compostos de Cálcio/farmacologia , Linhagem Celular , Cimentos Dentários/farmacologia , Técnicas In Vitro , Camundongos , Silicatos/farmacologia
3.
J Tissue Eng Regen Med ; 12(3): e1537-e1548, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28967188

RESUMO

There has been a growing demand for bone grafts for correction of bone defects in complicated fractures or tumours in the craniofacial region. Soft flexible membrane like material that could be inserted into defect by less invasive approaches; promote osteoconductivity and act as a barrier to soft tissue in growth while promoting bone formation is an attractive option for this region. Electrospinning has recently emerged as one of the most promising techniques for fabrication of extracellular matrix such as nano-fibrous scaffolds that can serve as a template for bone formation. To overcome the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA)-poly (ε) caprolactone (PCL)-Hydroxyapatite based bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic PCL by combination with a hydrophilic PVA and the HAB can contribute to enhance osteoconductivity. We characterized the physicochemical and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; [human bone marrow skeletal (mesenchymal) stem cells and dental pulp stem cells]. In addition, the scaffold supported in vitro osteogenic differentiation and in vivo vascularized bone formation. Thus, PVA-PCL-HAB scaffold is a suitable potential material for therapeutic bone regeneration in dentistry and orthopaedics.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Face/irrigação sanguínea , Face/fisiologia , Crânio/irrigação sanguínea , Crânio/fisiologia , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/farmacologia , Polpa Dentária/citologia , Durapatita/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanofibras , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Poliésteres/química , Álcool de Polivinil/química , Adulto Jovem
4.
SICOT J ; 2: 16, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27163105

RESUMO

INTRODUCTION: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. METHODS: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) - hyaluronic acid - tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT-PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (µCT) and histomorphometry. RESULTS AND DISCUSSION: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

5.
Tissue Eng Part A ; 21(3-4): 729-39, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25252795

RESUMO

In this study, we sought to assess the osteogenic potential of human dental pulp stem cells (DPSCs) on three different polycaprolactone (PCL) scaffolds. The backbone structure of the scaffolds was manufactured by fused deposition modeling (PCL scaffold). The composition and morphology was functionalized in two of the scaffolds. The first underwent thermal induced phase separation of PCL infused into the pores of the PCL scaffold. This procedure resulted in a highly variable micro- and nanostructured porous (NSP), interconnected, and isotropic tubular morphology (NSP-PCL scaffold). The second scaffold type was functionalized by dip-coating the PCL scaffold with a mixture of hyaluronic acid and ß-TCP (HT-PCL scaffold). The scaffolds were cylindrical and measured 5 mm in height and 10 mm in diameter. They were seeded with 1×10(6) human DPSCs, a cell type known to express bone-related markers, differentiate into osteoblasts-like cells, and to produce a mineralized bone-like extracellular matrix. DPSCs were phenotypically characterized by flow cytometry for CD90(+), CD73(+), CD105(+), and CD14(-). DNA, ALP, and Ca(2+) assays and real-time quantitative polymerase chain reaction for genes involved in osteogenic differentiation were analyzed on day 1, 7, 14, and 21. Cell viability and distribution were assessed on day 1, 7, 14, and 21 by fluorescent-, scanning electron-, and confocal microscopy. The results revealed that the DPSCs expressed relevant gene expression consistent with osteogenic differentiation. The NSP-PCL and HT-PCL scaffolds promoted osteogenic differentiation and Ca(2+) deposition after 21 days of cultivation. Different gene expressions associated with mature osteoblasts were upregulated in these two scaffold types, suggesting that the methods in which the scaffolds promote osteogenic differentiation, depends on functionalization approaches. However, only the HT-PCL scaffold was also able to support cell proliferation and cell migration resulting in even cell dispersion throughout the scaffold. In conclusion, DPSCs could be a possible alternate cell source for bone tissue engineering. The HT-PCL scaffold showed promising results in terms of promoting cell migration and osteogenic differentiation, which warrants future in vivo studies.


Assuntos
Fosfatos de Cálcio/química , Ácido Hialurônico/química , Osteoblastos/citologia , Poliésteres/química , Células-Tronco/citologia , Alicerces Teciduais , Adulto , Substitutos Ósseos/síntese química , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Polpa Dentária/citologia , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Teste de Materiais , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteoblastos/fisiologia , Osteogênese/fisiologia , Tamanho da Partícula , Células-Tronco/fisiologia , Engenharia Tecidual/instrumentação , Adulto Jovem
6.
Biomacromolecules ; 13(11): 3668-77, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23082770

RESUMO

We report a facile method of generating ultradense poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) surface by using high temperature alone, which in turn provides dramatic improvement in resisting nonspecific bioadsorption. X-ray photoelectron spectroscopy (XPS) revealed that the surface graft density increased ~4 times higher on the surface prepared at 80 °C compared to 20 °C. The studies from small-angle X-ray scattering (SAXS) and the effect of varying ionic strength during/post assemblies at 20 and 80 °C indicated that the "cloud point grafting effect" is not the cause for obtaining high density grafting. Stringent long-term bioresistance tests have been conducted and the temperature-induced PLL-g-PEG surfaces have achieved (1) zero mammalian cell adsorption/migration for up to 36 days and (2) extremely close-to-zero protein adsorptions have been observed even after 36 days in 10% serum media and 24 h in whole blood within the ultrasensitive detection limit of time-of-flight secondary ion mass spectrometry (ToF-SIMS).


Assuntos
Materiais Revestidos Biocompatíveis/química , Polietilenoglicóis/química , Polilisina/análogos & derivados , Transplantes , Adsorção , Animais , Sangue , Células Cultivadas , Humanos , Concentração Osmolar , Espectroscopia Fotoeletrônica , Polilisina/sangue , Polilisina/química , Propriedades de Superfície , Temperatura
7.
Cytotherapy ; 13(2): 214-26, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20491534

RESUMO

BACKGROUND AIMS: For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro. METHODS: Human DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3 Pa, 5 Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E2 (PGE2) production, and gene expression of cyclooxygenase (COX)-1 and COX-2. RESULTS: We found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE2 production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE2, production was significantly enhanced. CONCLUSIONS: These data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.


Assuntos
Remodelação Óssea , Polpa Dentária/citologia , Osso e Ossos , Calcificação Fisiológica , Diferenciação Celular , Células Cultivadas , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Polpa Dentária/metabolismo , Polpa Dentária/fisiologia , Expressão Gênica , Humanos , Dente Serotino , Óxido Nítrico/metabolismo , Reação em Cadeia da Polimerase , Prostaglandinas E/metabolismo , Fluxo Pulsátil , Resistência ao Cisalhamento , Estresse Mecânico , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA