Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 152(8): 1668-1684, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36533672

RESUMO

The mechanisms linking tumor microenvironment acidosis to disease progression are not understood. Here, we used mammary, pancreatic, and colon cancer cells to show that adaptation to growth at an extracellular pH (pHe ) mimicking acidic tumor niches is associated with upregulated net acid extrusion capacity and elevated intracellular pH at physiological pHe , but not at acidic pHe . Using metabolic profiling, shotgun lipidomics, imaging and biochemical analyses, we show that the acid adaptation-induced phenotype is characterized by a shift toward oxidative metabolism, increased lipid droplet-, triacylglycerol-, peroxisome content and mitochondrial hyperfusion. Peroxisome proliferator-activated receptor-α (PPARA, PPARα) expression and activity are upregulated, at least in part by increased fatty acid uptake. PPARα upregulates genes driving increased mitochondrial and peroxisomal mass and ß-oxidation capacity, including mitochondrial lipid import proteins CPT1A, CPT2 and SLC25A20, electron transport chain components, peroxisomal proteins PEX11A and ACOX1, and thioredoxin-interacting protein (TXNIP), a negative regulator of glycolysis. This endows acid-adapted cancer cells with increased capacity for utilizing fatty acids for metabolic needs, while limiting glycolysis. As a consequence, the acid-adapted cells exhibit increased sensitivity to PPARα inhibition. We conclude that PPARα is a key upstream regulator of metabolic changes favoring cancer cell survival in acidic tumor niches.


Assuntos
Acidose , Neoplasias , Humanos , Fatores de Transcrição/genética , Regulação da Expressão Gênica , PPAR alfa/genética , PPAR alfa/metabolismo , Ácidos Graxos/metabolismo , Neoplasias/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Microambiente Tumoral
2.
EMBO Rep ; 21(6): e48885, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329196

RESUMO

Post-translational modifications (PTMs) greatly expand the function and potential for regulation of protein activity, and O-glycosylation is among the most abundant and diverse PTMs. Initiation of O-GalNAc glycosylation is regulated by 20 distinct GalNAc-transferases (GalNAc-Ts), and deficiencies in individual GalNAc-Ts are associated with human disease, causing subtle but distinct phenotypes in model organisms. Here, we generate a set of isogenic keratinocyte cell lines lacking either of the three dominant and differentially expressed GalNAc-Ts. Through the ability of keratinocytes to form epithelia, we investigate the phenotypic consequences of the loss of individual GalNAc-Ts. Moreover, we probe the cellular responses through global transcriptomic, differential glycoproteomic, and differential phosphoproteomic analyses. We demonstrate that loss of individual GalNAc-T isoforms causes distinct epithelial phenotypes through their effect on specific biological pathways; GalNAc-T1 targets are associated with components of the endomembrane system, GalNAc-T2 targets with cell-ECM adhesion, and GalNAc-T3 targets with epithelial differentiation. Thus, GalNAc-T isoforms serve specific roles during human epithelial tissue formation.


Assuntos
N-Acetilgalactosaminiltransferases , Diferenciação Celular , Epitélio/metabolismo , Glicosilação , Humanos , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Polissacarídeos , Processamento de Proteína Pós-Traducional
3.
Cell Cycle ; 17(9): 1056-1067, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29895196

RESUMO

Precise acid-base homeostasis is essential for maintaining normal cell proliferation and growth. Conversely, dysregulated acid-base homeostasis, with increased acid extrusion and marked extracellular acidification, is an enabling feature of solid tumors, yet the mechanisms through which intra- and extracellular pH (pHi, pHe) impact proliferation and growth are incompletely understood. The aim of this study was to determine the impact of pH, and specifically of the Na+/H+ exchanger NHE1 and Na+, HCO3- transporter NBCn1, on cell cycle progression and its regulators in human breast cancer cells. Reduction of pHe to 6.5, a common condition in tumors, significantly delayed cell cycle progression in MCF-7 human breast cancer cells. The NHE1 protein level peaked in S phase and that of NBCn1 in G2/M. Steady state pHi changed through the cell cycle, from 7.1 in early S phase to 6.8 in G2, recovering again in M phase. This pattern, as well as net acid extrusion capacity, was dependent on NHE1 and NBCn1. Accordingly, knockdown of either NHE1 or NBCn1 reduced proliferation, prolonged cell cycle progression in a manner involving S phase prolongation and delayed G2/M transition, and altered the expression pattern and phosphorylation of cell cycle regulatory proteins. Our work demonstrates, for the first time, that both NHE1 and NBCn1 regulate cell cycle progression in breast cancer cells, and we propose that this involves cell cycle phase-specific pHi regulation by the two transporters.


Assuntos
Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Fosforilação , Simportadores de Sódio-Bicarbonato/genética , Trocador 1 de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA