Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(24): 17753-17776, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34748351

RESUMO

Accumulation of very long chain fatty acids (VLCFAs) due to defects in ATP binding cassette protein D1 (ABCD1) is thought to underlie the pathologies observed in adrenoleukodystrophy (ALD). Pursuing a substrate reduction approach based on the inhibition of elongation of very long chain fatty acid 1 enzyme (ELOVL1), we explored a series of thiazole amides that evolved into compound 27─a highly potent, central nervous system (CNS)-penetrant compound with favorable in vivo pharmacokinetics. Compound 27 selectively inhibits ELOVL1, reducing C26:0 VLCFA synthesis in ALD patient fibroblasts, lymphocytes, and microglia. In mouse models of ALD, compound 27 treatment reduced C26:0 VLCFA concentrations to near-wild-type levels in blood and up to 65% in the brain, a disease-relevant tissue. Preclinical safety findings in the skin, eye, and CNS precluded progression; the origin and relevance of these findings require further study. ELOVL1 inhibition is an effective approach for normalizing VLCFAs in models of ALD.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Elongases de Ácidos Graxos/administração & dosagem , Pirazóis/farmacologia , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/patologia , Amidas/química , Animais , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Humanos , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/uso terapêutico , Relação Estrutura-Atividade
2.
Proc Natl Acad Sci U S A ; 113(41): E6097-E6106, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27679849

RESUMO

The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy.


Assuntos
Aminoácidos/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Aminoácidos/genética , Animais , Transporte Axonal , Genes Reporter , Células HEK293 , Células HeLa , Humanos , Camundongos , Dinâmica Mitocondrial , Mitofagia/genética , Mutação , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Proteólise , Células Piramidais/metabolismo , Ratos , Ratos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitinação , Proteínas rho de Ligação ao GTP/genética
3.
J Virol ; 87(17): 9431-40, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804637

RESUMO

Alphaherpesviruses, including pseudorabies virus (PRV), spread directionally within the nervous systems of their mammalian hosts. Three viral membrane proteins are required for efficient anterograde-directed spread of infection in neurons, including Us9 and a heterodimer composed of the glycoproteins gE and gI. We previously demonstrated that the kinesin-3 motor KIF1A mediates anterograde-directed transport of viral particles in axons of cultured peripheral nervous system (PNS) neurons. The PRV Us9 protein copurifies with KIF1A, recruiting the motor to transport vesicles, but at least one unidentified additional viral protein is necessary for this interaction. Here we show that gE/gI are required for efficient anterograde transport of viral particles in axons by mediating the interaction between Us9 and KIF1A. In the absence of gE/gI, viral particles containing green fluorescent protein (GFP)-tagged Us9 are assembled in the cell body but are not sorted efficiently into axons. Importantly, we found that gE/gI are necessary for efficient copurification of KIF1A with Us9, especially at early times after infection. We also constructed a PRV recombinant that expresses a functional gE-GFP fusion protein and used affinity purification coupled with mass spectrometry to identify gE-interacting proteins. Several viral and host proteins were found to associate with gE-GFP. Importantly, both gI and Us9, but not KIF1A, copurified with gE-GFP. We propose that gE/gI are required for efficient KIF1A-mediated anterograde transport of viral particles because they indirectly facilitate or stabilize the interaction between Us9 and KIF1A.


Assuntos
Alphaherpesvirinae/fisiologia , Herpesvirus Suídeo 1/fisiologia , Cinesinas/fisiologia , Lipoproteínas/fisiologia , Neurônios/fisiologia , Neurônios/virologia , Fosfoproteínas/fisiologia , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/fisiologia , Alphaherpesvirinae/genética , Alphaherpesvirinae/patogenicidade , Animais , Transporte Axonal/fisiologia , Linhagem Celular , Células Cultivadas , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/patogenicidade , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas/genética , Células PC12 , Fosfoproteínas/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Suínos , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Vírion/fisiologia
4.
Viruses ; 5(2): 678-707, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23435239

RESUMO

Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.


Assuntos
Alphaherpesvirinae/fisiologia , Sistema Nervoso/virologia , Animais , Transporte Biológico , Citoesqueleto/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/virologia
5.
Cell Host Microbe ; 12(6): 806-14, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23245325

RESUMO

During infection of the nervous system, alphaherpesviruses-including pseudorabies virus (PRV)-use retrograde axonal transport to travel toward the neuronal cell body and anterograde transport to traffic back to the cell periphery upon reactivation from latency. The PRV protein Us9 plays an essential but unknown role in anterograde viral spread. To determine Us9 function, we identified viral and host proteins that interact with Us9 and explored the role of KIF1A, a microtubule-dependent kinesin-3 motor involved in axonal sorting and transport. Viral particles are cotransported with KIF1A in axons of primary rat superior cervical ganglion neurons, and overexpression or disruption of KIF1A function, respectively, increases and reduces anterograde capsid transport. Us9 and KIF1A interact early during infection with the aid of additional viral protein(s) but exhibit diminished binding at later stages, when capsids typically stall in axons. Thus, alphaherpesviruses repurpose the axonal transport and sorting pathway to spread within their hosts.


Assuntos
Herpesvirus Suídeo 1/patogenicidade , Interações Hospedeiro-Patógeno , Cinesinas/metabolismo , Lipoproteínas/metabolismo , Neurônios/virologia , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular , Mapeamento de Interação de Proteínas , Ratos
6.
Nat Nanotechnol ; 7(9): 587-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22796742

RESUMO

Methods for probing mechanical responses of mammalian cells to electrical excitations can improve our understanding of cellular physiology and function. The electrical response of neuronal cells to applied voltages has been studied in detail, but less is known about their mechanical response to electrical excitations. Studies using atomic force microscopes (AFMs) have shown that mammalian cells exhibit voltage-induced mechanical deflections at nanometre scales, but AFM measurements can be invasive and difficult to multiplex. Here we show that mechanical deformations of neuronal cells in response to electrical excitations can be measured using piezoelectric PbZr(x)Ti(1-x)O(3) (PZT) nanoribbons, and we find that cells deflect by 1 nm when 120 mV is applied to the cell membrane. The measured cellular forces agree with a theoretical model in which depolarization caused by an applied voltage induces a change in membrane tension, which results in the cell altering its radius so that the pressure remains constant across the membrane. We also transfer arrays of PZT nanoribbons onto a silicone elastomer and measure mechanical deformations on a cow lung that mimics respiration. The PZT nanoribbons offer a minimally invasive and scalable platform for electromechanical biosensing.


Assuntos
Membrana Celular/química , Nanotubos de Carbono/química , Neurônios , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Técnicas Biossensoriais , Estimulação Elétrica , Microscopia de Força Atômica , Modelos Teóricos , Neurônios/química , Neurônios/citologia , Células PC12 , Ratos
7.
Cell Host Microbe ; 11(5): 504-14, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22607803

RESUMO

Mitochondria are dynamic organelles that are essential for cellular metabolism but can be functionally disrupted during pathogen infection. In neurons, mitochondria are transported on microtubules via the molecular motors kinesin-1 and dynein and recruited to energy-requiring regions such as synapses. Previous studies showed that proteins from pseudorabies virus (PRV), an alphaherpesvirus, localize to mitochondria and affect mitochondrial function. We show that PRV and herpes simplex virus type 1 (HSV-1) infection of rodent superior cervical ganglion (SCG) neurons disrupts mitochondrial motility and morphology. During PRV infection, glycoprotein B (gB)-dependent fusion events result in electrical coupling of neurons and increased action potential firing rates. Consequently, intracellular [Ca(2+)] increases and alters mitochondrial dynamics through a mechanism involving the Ca(2+)-sensitive cellular protein Miro and reduced recruitment of kinesin-1 to mitochondria. This disruption in mitochondrial dynamics is required for efficient growth and spread of PRV, indicating that altered mitochondrial transport enhances alphaherpesvirus pathogenesis and infection.


Assuntos
Herpesvirus Humano 1/patogenicidade , Herpesvirus Suídeo 1/patogenicidade , Mitocôndrias/fisiologia , Neurônios/metabolismo , Neurônios/virologia , Animais , Cálcio/análise , Citoplasma/química , Cinesinas/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Movimento , Ratos , Proteínas rho de Ligação ao GTP/metabolismo
8.
J Am Soc Mass Spectrom ; 21(1): 34-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19822444

RESUMO

Current biological studies have been advanced by the continuous development of robust, accurate, and sensitive mass spectrometric technologies. The MALDI LTQ Orbitrap is a new addition to the Orbitrap configurations, known for their high resolving power and accuracy. This configuration provides features inherent to the MALDI source, such as reduced spectra complexity, forgiveness to contaminants, and sample retention for follow-up analyses with targeted or hypothesis-driven questions. Here we investigate its performance for characterizing the composition of isolated protein complexes. To facilitate the assessment, we selected two well characterized complexes from Saccharomyces cerevisiae, Apl1 and Nup84. Manual and automatic MS and MS/MS analyses readily resolved their compositions, with increased confidence of protein identification compared with our previous reports using MALDI QqTOF and MALDI IT. CID fragmentation of singly-charged peptides provided sufficient information for conclusive identification of the isolated proteins. We then assessed the resolution, accuracy, and sensitivity provided by this instrument in the context of analyzing the isolated protein assemblies. Our analysis of complex mixtures of singly-charged ions up to m/z 4000 showed that (1) the resolving power, inversely proportional to the square root of m/z, had over four orders of magnitude dynamic range; (2) internal calibration led to improved accuracy, with an average absolute mass error of 0.5 ppm and a distribution centered at 0 ppm; and (3) subfemtomole sensitivity was achieved using both CHCA and DHB matrices. Additionally, our analyses of a synthetic phosphorylated peptide in mixtures showed subfemtomole level of detection using neutral loss scanning.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Calibragem , Complexo de Proteínas Formadoras de Poros Nucleares/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Sensibilidade e Especificidade
9.
J Cell Sci ; 119(Pt 15): 3107-16, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16835274

RESUMO

Kinesin-like calmodulin-binding protein, KCBP, is a novel member of the C-kinesin superfamily first discovered in flowering plants. This minus-end-directed kinesin exhibits Ca(2+)-calmodulin-sensitive motor activity in vitro and has been implicated in trichome morphogenesis and cell division. A homologue of KCBP is also found in the unicellular, biflagellate green alga Chlamydomonas reinhardtii (CrKCBP). Unlike plant cells, Chlamydomonas cells do not form trichomes and do not assemble a phragmoplast before cell division. To test whether CrKCBP is involved in additional microtubule-based processes not observed in plants, we generated antibodies against the putative calmodulin-binding domain and used these antibodies in biochemical and localization studies. In interphase cells CrKCBP primarily localizes near the base of the flagella, although surprisingly, a small fraction also localizes along the length of the flagella. CrKCBP is bound to isolated axonemes in an ATP-dependent fashion and is not a component of the dynein arms, radial spokes or central apparatus. During mitosis, CrKCBP appears concentrated at the centrosomes during prophase and metaphase. However, during telophase and cytokinesis CrKCBP co-localizes with the microtubules associated with the phycoplast. These studies implicate CrKCBP in flagellar functions as well as cell division.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Divisão Celular/fisiologia , Chlamydomonas reinhardtii , Flagelos/metabolismo , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Animais , Proteínas de Ligação a Calmodulina/genética , Ciclo Celular/fisiologia , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/fisiologia , Microtúbulos/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Combinação Trimetoprima e Sulfametoxazol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA