Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 48(2): 596-611, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32638097

RESUMO

PURPOSE: Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme that modulates intracellular transport and protein quality control. Inhibition of HDAC6 deacetylase activity has shown beneficial effects in disease models, including Alzheimer's disease and amyotrophic lateral sclerosis. This first-in-human positron emission tomography (PET) study evaluated the brain binding of [18F]EKZ-001 ([18F]Bavarostat), a radiotracer selective for HDAC6, in healthy adult subjects. METHODS: Biodistribution and radiation dosimetry studies were performed in four healthy subjects (2M/2F, 23.5 ± 2.4 years) using sequential whole-body PET/CT. The most appropriate kinetic model to quantify brain uptake was determined in 12 healthy subjects (6M/6F, 57.6 ± 3.7 years) from 120-min dynamic PET/MR scans using a radiometabolite-corrected arterial plasma input function. Four subjects underwent retest scans (2M/2F, 57.3 ± 5.6 years) with a 1-day interscan interval to determine test-retest variability (TRV). Regional volume of distribution (VT) was calculated using one-tissue and two-tissue compartment models (1-2TCM) and Logan graphical analysis (LGA), with time-stability assessed. VT differences between males and females were evaluated using volume of interest and whole-brain voxel-wise approaches. RESULTS: The effective dose was 39.1 ± 7.0 µSv/MBq. Based on the Akaike information criterion, 2TCM was the preferred model compared to 1TCM. Regional LGA VT were in agreement with 2TCM VT, however demonstrated a lower absolute TRV of 7.7 ± 4.9%. Regional VT values were relatively homogeneous with highest values in the hippocampus and entorhinal cortex. Reduction of acquisition time was achieved with a 0 to 60-min scan followed by a 90 to 120-min scan. Males demonstrated significantly higher VT than females in the majority of cortical and subcortical brain regions. No relevant radiotracer related adverse events were reported. CONCLUSION: [18F]EKZ-001 is safe and appropriate for quantifying HDAC6 expression in the human brain with Logan graphical analysis as the preferred quantitative approach. Males showed higher HDAC6 expression across the brain compared to females.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Adulto , Feminino , Desacetilase 6 de Histona , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Adulto Jovem
2.
ACS Chem Neurosci ; 11(7): 1093-1101, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159328

RESUMO

Histone deacetylase 6 (HDAC6) is a multifunctional cytoplasmic enzyme involved in diverse cellular processes such as intracellular transport and protein quality control. Inhibition of HDAC6 can alleviate defects in cell and rodent models of certain diseases, particularly neurodegenerative disorders, including Alzheimer's disease and amyotrophic lateral sclerosis. However, while HDAC6 represents a potentially powerful therapeutic target, development of effective brain-penetrant HDAC6 inhibitors remains challenging. Recently, [18F]EKZ-001 ([18F]Bavarostat), a brain-penetrant positron emission tomography (PET) radioligand with high affinity and selectivity toward HDAC6, was developed and evaluated preclinically for its ability to bind HDAC6. Herein, we describe the efficient and robust fully automated current Good Manufacturing Practices (cGMP) compliant production method. [18F]EKZ-001 quantification methods were validated in nonhuman primates (NHP) using full kinetic modeling, and [18F]EKZ-001 PET was applied to compare dose-occupancy relationships between two HDAC6 inhibitors, EKZ-317 and ACY-775. [18F]EKZ-001 is cGMP produced with an average decay-corrected radiochemical yield of 14% and an average molar activity of 204 GBq/µmol. We demonstrate that a two-tissue compartmental model and Logan graphical analysis are appropriate for [18F]EKZ-001 PET quantification in NHP brain. Blocking studies show that the novel compound EKZ-317 achieves higher target occupancy than ACY-775. This work supports the translation of [18F]EKZ-001 PET for first-in-human studies.


Assuntos
Encéfalo/enzimologia , Radioisótopos de Flúor/farmacologia , Desacetilase 6 de Histona/metabolismo , Ácidos Hidroxâmicos/farmacologia , Pirimidinas/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , GMP Cíclico/biossíntese , Radioisótopos de Flúor/química , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/química
3.
Cancer Discov ; 7(1): 38-53, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733359

RESUMO

Somatic mutations in CREBBP occur frequently in B-cell lymphoma. Here, we show that loss of CREBBP facilitates the development of germinal center (GC)-derived lymphomas in mice. In both human and murine lymphomas, CREBBP loss-of-function resulted in focal depletion of enhancer H3K27 acetylation and aberrant transcriptional silencing of genes that regulate B-cell signaling and immune responses, including class II MHC. Mechanistically, CREBBP-regulated enhancers are counter-regulated by the BCL6 transcriptional repressor in a complex with SMRT and HDAC3, which we found to bind extensively to MHC class II loci. HDAC3 loss-of-function rescued repression of these enhancers and corresponding genes, including MHC class II, and more profoundly suppressed CREBBP-mutant lymphomas in vitro and in vivo Hence, CREBBP loss-of-function contributes to lymphomagenesis by enabling unopposed suppression of enhancers by BCL6/SMRT/HDAC3 complexes, suggesting HDAC3-targeted therapy as a precision approach for CREBBP-mutant lymphomas. SIGNIFICANCE: Our findings establish the tumor suppressor function of CREBBP in GC lymphomas in which CREBBP mutations disable acetylation and result in unopposed deacetylation by BCL6/SMRT/HDAC3 complexes at enhancers of B-cell signaling and immune response genes. Hence, inhibition of HDAC3 can restore the enhancer histone acetylation and may serve as a targeted therapy for CREBBP-mutant lymphomas. Cancer Discov; 7(1); 38-53. ©2016 AACR.See related commentary by Höpken, p. 14This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Proteína de Ligação a CREB/genética , Centro Germinativo/metabolismo , Histona Desacetilases/genética , Linfoma Difuso de Grandes Células B/genética , Mutação , Acetilação , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Técnicas de Inativação de Genes , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Transplante de Neoplasias , Correpressor 2 de Receptor Nuclear/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Transcrição Gênica
4.
Amyotroph Lateral Scler ; 9(1): 4-15, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18273714

RESUMO

Identification of SOD1 as the mutated protein in a significant subset of familial amyotrophic lateral sclerosis (FALS) cases has led to the generation of transgenic rodent models of autosomal dominant SOD1 FALS. Mice carrying 23 copies of the human SOD1(G93A) transgene are considered the standard model for FALS and ALS therapeutic studies. To date, there have been at least 50 publications describing therapeutic agents that extend the lifespan of this mouse. However, no therapeutic agent besides riluzole has shown corresponding clinical efficacy. We used computer modeling and statistical analysis of 5429 SOD1(G93A) mice from our efficacy studies to quantify the impact of several critical confounding biological variables that must be appreciated and should be controlled for when designing and interpreting efficacy studies. Having identified the most critical of these biological variables, we subsequently instituted parameters for optimal study design in the SOD1(G93A) mouse model. We retested several compounds reported in major animal studies (minocycline, creatine, celecoxib, sodium phenylbutyrate, ceftriaxone, WHI-P131, thalidomide, and riluzole) using this optimal study design and found no survival benefit in the SOD1(G93A) mouse for any compounds (including riluzole) administered by their previously reported routes and doses. The presence of these uncontrolled confounding variables in the screening system, and the failure of these several drugs to demonstrate efficacy in adequately designed and powered repeat studies, leads us to conclude that the majority of published effects are most likely measurements of noise in the distribution of survival means as opposed to actual drug effect. We recommend a minimum study design for this mouse model to best address and manage this inherent noise and to facilitate more significant and reproducible results among all laboratories employing the SOD1(G93A) mouse.


Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Projetos de Pesquisa , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/mortalidade , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Especificidade da Espécie , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA