Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0307255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024400

RESUMO

Jumping is an important task in skiing, snowboarding, ski jumping, figure skating, volleyball and many other sports. In these examples, jumping tasks are a performance criterion, and therefore detailed insight into them is important for athletes and coaches. Therefore, this paper aims to introduce a simple and easy-to-implement jump detection algorithm for skiing using acceleration data from inertial measurement units attached to ski boots. The algorithm uses the average of the absolute vertical accelerations of the two boots. We provide results for different parameter settings of the algorithm and two types of jumps: Big Air jumps and jumps during skiing. The latter are divided into small (time of flight < 500 ms) and medium (time of flight ≥ 500 ms) jumps. The algorithm detects 100% of Big Air, 94% of medium and 44% of small jumps. In addition, the settings with the highest detection rates also have the highest number of overdetected jumps. To resolve this conflict, a penalty-adjusted score that considers the number of overdetected jumps in the final performance analysis is proposed.


Assuntos
Algoritmos , Esqui , Esqui/fisiologia , Humanos , Desempenho Atlético/fisiologia , Fenômenos Biomecânicos , Aceleração , Masculino
2.
J Sports Sci Med ; 22(3): 476-487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37711721

RESUMO

The search for monitoring tools that provide early indication of injury and illness could contribute to better player protection. The aim of the present study was to i) determine the feasibility of and adherence to our monitoring approach, and ii) identify variables associated with up-coming illness and injury. We incorporated a comprehensive set of monitoring tools consisting of external load and physical fitness data, questionnaires, blood, neuromuscular-, hamstring, hip abductor and hip adductor performance tests performed over a three-month period in elite under-18 academy soccer players. Twenty-five players (age: 16.6 ± 0.9 years, height: 178 ± 7 cm, weight: 74 ± 7 kg, VO2max: 59 ± 4 ml/min/kg) took part in the study. In addition to evaluating adherence to the monitoring approach, data were analyzed using a linear support vector machine (SVM) to predict illness and injuries. The approach was feasible, with no injuries or dropouts due to the monitoring process. Questionnaire adherence was high at the beginning and decreased steadily towards the end of the study. An SVM resulted in the best classification results for three classification tasks, i.e., illness prediction, illness determination and injury prediction. For injury prediction, one of four injuries present in the test data set was detected, with 96.3% of all data points (i.e., injuries and non-injuries) correctly detected. For both illness prediction and determination, there was only one illness in the test data set that was detected by the linear SVM. However, the model showed low precision for injury and illness prediction with a considerable number of false-positives. The results demonstrate the feasibility of a holistic monitoring approach with the possibility of predicting illness and injury. Additional data points are needed to improve the prediction models. In practical application, this may lead to overcautious recommendations on when players should be protected from injury and illness.


Assuntos
Músculos Isquiossurais , Futebol , Humanos , Adolescente , Aprendizado de Máquina , Aptidão Física
3.
Front Sports Act Living ; 4: 971137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299402

RESUMO

Alpine skiing is an attractive winter sport that often includes mental and physical demands. Since skiing is often done for several hours, fatigue processes occur that might lead to action errors associated with a higher risk of accidents and injuries. The aim of this study was to investigate the timing of changes in subjective, physiological, and biomechanical parameters during a physically demanding, standardized, non-competitive alpine skiing session. A group of 22 experienced male skiers carried out 10 runs, each lasting between 150 and 180 s, at a turn rate of 80 turns per minute with their best skiing technique. Immediately after the run, skiers reported ratings of fatigue, and other affective states. During skiing, breathing pattern and biomechanical data of the ski turns as radial force, turn duration, edge angle symmetry, and a composed motion quality score were recorded. Analyses of variances on skiers showing signs of fatigue (n =16) revealed that only the subjective data changed significantly over time: fatigue and worry increased, vitality and calm decreased. Subsequently, individual change points analyses were computed to localize abrupt distribution or statistical changes in time series data. For some skiers, abrupt changes at certain runs in physiological and/or biomechanical parameters were observed in addition to subjective data. The results show general effects in subjective data, and individual fatigue-related patterns concerning the onset of changes in subjective, physiological, and biomechanical parameters. Individuality of response to fatigue should be considered when studying indicators of fatigue data. Based on the general effects in subjective data, it is concluded that focusing on self-regulation and self-awareness may play a key role, as subjective variables have been shown generally sensitive to the physical stress in alpine skiing. In the future, customized algorithms that indicate the onset of fatigue could be developed to improve alpine skiers' self-awareness and self-regulation, potentially leading to fewer action errors.

4.
Front Physiol ; 13: 1000898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262260

RESUMO

Load management, i.e., prescribing, monitoring, and adjusting training load, is primarily aimed at preventing injury and maximizing performance. The search for objective monitoring tools to assess the external and internal load of athletes is of great interest for sports science research. In this 4-week pilot study, we assessed the feasibility and acceptance of an extensive monitoring approach using biomarkers, neuromuscular performance, and questionnaires in an elite youth soccer setting. Eight male players (mean ± SD: age: 17.0 ± 0.6 years, weight: 69.6 ± 8.2 kg, height: 177 ± 7 cm, VO2max: 62.2 ± 3.8 ml/min/kg) were monitored with a local positioning system (e.g., distance covered, sprints), biomarkers (cell-free DNA, creatine kinase), questionnaires, neuromuscular performance testing (counter-movement jump) and further strength testing (Nordic hamstring exercise, hip abduction and adduction). Feasibility was high with no substantial impact on the training routine and no adverse events such as injuries during monitoring. Adherence to the performance tests was high, but adherence to the daily questionnaires was low, and decreased across the study period. Occasional significant correlations were observed between questionnaire scores and training load data, as well as between questionnaire scores and neuromuscular performance. However, due to the small sample size, these findings should be treated with caution. These preliminary results highlight the feasibility of the approach in elite soccer, but also indicate that modifications are needed in further large-scale studies, particularly in relation to the length of the questionnaire.

5.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808282

RESUMO

The use of sensor technology in sports facilitates the data-driven evaluation of human movement not only in terms of quantity but also in terms of quality. This scoping review presents an overview of sensor technologies and human movement quality assessments in ecologically-similar environments. We searched four online databases to identify 16 eligible articles with either recreational and/or professional athletes. A total of 50% of the studies used inertial sensor technology, 31% vision-based sensor technology. Most of the studies (69%) assessed human movement quality using either the comparison to an expert's performance, to an exercise definition or to the athletes' individual baseline performance. A total of 31% of the studies used expert-based labeling of the movements to label data. None of the included studies used a control group-based study design to investigate impact on training progress, injury prevention or behavior change. Although studies have used sensor technology for movement quality assessment, the transfer from the lab to the field in recreational and professional sports is still emerging. Hence, research would benefit from impact studies of technology-assisted training interventions including control groups as well as investigating features of human movement quality in addition to kinematic parameters.


Assuntos
Desempenho Atlético , Medicina Esportiva , Atletas , Humanos , Movimento , Tecnologia
6.
Sensors (Basel) ; 22(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590822

RESUMO

Inpatient gait analysis is an essential part of rehabilitation for foot amputees and includes the ground contact time (GCT) difference of both legs as an essential component. Doctors communicate improvement advice to patients regarding their gait pattern based on a few steps taken at the doctor's visit. A wearable sensor system, called Suralis, consisting of an inertial measurement unit (IMU) and a pressure measuring sock, including algorithms calculating GCT, is presented. Two data acquisitions were conducted to implement and validate initial contact (IC) and toe-off (TO) event detection algorithms as the basis for the GCT difference determination for able-bodied and prosthesis wearers. The results of the algorithms show a median GCT error of -51.7 ms (IMU) and 14.7 ms (sensor sock) compared to the ground truth and thus represent a suitable possibility for wearable gait analysis. The wearable system presented, therefore, enables a continuous feedback system for patients and, above all, a remote diagnosis of spatio-temporal aspects of gait behaviour based on reliable data collected in everyday life.


Assuntos
Marcha , Dispositivos Eletrônicos Vestíveis , Algoritmos , Fenômenos Biomecânicos , , Análise da Marcha , Humanos
7.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884051

RESUMO

In gesture-aided learning (GAL), learners perform specific body gestures while rehearsing the associated learning content. Although this form of embodiment has been shown to benefit learning outcomes, it has not yet been incorporated into e-learning. This work presents a generic system design for an online GAL platform. It is comprised of five modules for planning, administering, and monitoring remote GAL lessons. To validate the proposed design, a reference implementation for word learning was demonstrated in a field test. 19 participants independently took a predefined online GAL lesson and rated their experience on the System Usability Scale and a supplemental questionnaire. To monitor the correct gesture execution, the reference implementation recorded the participants' webcam feeds and uploaded them to the instructor for review. The results from the field test show that the reference implementation is capable of delivering an e-learning experience with GAL elements. Designers of e-learning platforms may use the proposed design to include GAL in their applications. Beyond its original purpose in education, the platform is also useful to collect and annotate gesture data.


Assuntos
Instrução por Computador , Gestos , Humanos , Aprendizagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA