Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(34): E7092-E7100, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784805

RESUMO

TRPM6 and TRPM7 are members of the melastatin-related transient receptor potential (TRPM) subfamily of ion channels. Deletion of either gene in mice is embryonically lethal. TRPM6/7 are the only known examples of single polypeptides containing both an ion channel pore and a serine/threonine kinase (chanzyme). Here we show that the C-terminal kinase domain of TRPM6 is cleaved from the channel domain in a cell type-specific fashion and is active. Cleavage requires that the channel conductance is functional. The cleaved kinase translocates to the nucleus, where it is strictly localized and phosphorylates specific histone serine and threonine (S/T) residues. TRPM6-cleaved kinases (M6CKs) bind subunits of the protein arginine methyltransferase 5 (PRMT5) molecular complex that make important epigenetic modifications by methylating histone arginine residues. Histone phosphorylation by M6CK results in a dramatic decrease in methylation of arginines adjacent to M6CK-phosphorylated amino acids. Knockout of TRPM6 or inactivation of its kinase results in global changes in histone S/T phosphorylation and changes the transcription of hundreds of genes. We hypothesize that M6CK associates with the PRMT5 molecular complex in the nucleus, directing M6CK to a specific genomic location and providing site-specific histone phosphorylation. M6CK histone phosphorylation, in turn, regulates transcription by attenuating the effect of local arginine methylation.


Assuntos
Arginina/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Canais de Cátion TRPM/metabolismo , Arginina/química , Arginina/genética , Linhagem Celular , Histonas/química , Histonas/genética , Humanos , Metilação , Fosforilação , Domínios Proteicos , Serina/genética , Serina/metabolismo , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Treonina/genética , Treonina/metabolismo
2.
Cell ; 157(5): 1061-72, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855944

RESUMO

TRPM7 is a ubiquitous ion channel and kinase, a unique "chanzyme," required for proper early embryonic development. It conducts Zn(2+), Mg(2+), and Ca(2+) as well as monovalent cations and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell-type-specific manner. These TRPM7 cleaved kinase fragments (M7CKs) translocate to the nucleus and bind multiple components of chromatin-remodeling complexes, including Polycomb group proteins. In the nucleus, the kinase phosphorylates specific serines/threonines of histones. M7CK-dependent phosphorylation of H3Ser10 at promoters of TRPM7-dependent genes correlates with their activity. We also demonstrate that cytosolic free [Zn(2+)] is TRPM7 dependent and regulates M7CK binding to transcription factors containing zinc-finger domains. These findings suggest that TRPM7-mediated modulation of intracellular Zn(2+) concentration couples ion-channel signaling to epigenetic chromatin covalent modifications that affect gene expression patterns. PAPERCLIP:


Assuntos
Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Citosol/metabolismo , Expressão Gênica , Histonas/metabolismo , Humanos , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases , Zinco/metabolismo , Dedos de Zinco
3.
Dev Cell ; 22(6): 1149-62, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22698280

RESUMO

Transient receptor potential melastatin-like 7 (TRPM7) is a channel protein that also contains a regulatory serine-threonine kinase domain. Here, we find that Trpm7-/- T cells are deficient in Fas-receptor-induced apoptosis and that TRPM7 channel activity participates in the apoptotic process and is regulated by caspase-dependent cleavage. This function of TRPM7 is dependent on its function as a channel, but not as a kinase. TRPM7 is cleaved by caspases at D1510, disassociating the carboxy-terminal kinase domain from the pore without disrupting the phosphotransferase activity of the released kinase but substantially increasing TRPM7 ion channel activity. Furthermore, we show that TRPM7 regulates endocytic compartmentalization of the Fas receptor after receptor stimulation, an important process for apoptotic signaling through Fas receptors. These findings raise the possibility that other members of the TRP channel superfamily are also regulated by caspase-mediated cleavage, with wide-ranging implications for cell death and differentiation.


Assuntos
Apoptose , Canais de Cátion TRPM/metabolismo , Receptor fas/metabolismo , Animais , Caspases/metabolismo , Linhagem Celular , Endocitose , Humanos , Canais Iônicos/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo
4.
Proc Natl Acad Sci U S A ; 108(48): 19234-9, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22084111

RESUMO

Specialized proteins in the plasma membrane, endoplasmic reticulum (ER), and mitochondria tightly regulate intracellular calcium. A unique mechanism called store-operated calcium entry is activated when ER calcium is depleted, serving to restore intra-ER calcium levels. An ER calcium sensor, stromal interaction molecule 1 (STIM1), translocates within the ER membrane upon store depletion to the juxtaplasma membrane domain, where it interacts with intracellular domains of a highly calcium-selective plasma membrane ion channel, Orai1. STIM1 gates Orai1, allowing calcium to enter the cytoplasm, where it repletes the ER store via calcium-ATPases pumps. Here, we performed affinity purification of Orai1 from Jurkat cells to identify partner of STIM1 (POST), a 10-transmembrane-spanning segment protein of unknown function. The protein is located in the plasma membrane and ER. POST-Orai1 binding is store depletion-independent. On store depletion, the protein binds STIM1 and moves within the ER to localize near the cell membrane. This protein, TMEM20 (POST), does not affect store-operated calcium entry but does reduce plasma membrane Ca(2+) pump activity. Store depletion promotes STIM1-POST complex binding to smooth ER and plasma membrane Ca(2+) ATPases (SERCAs and PMCAs, respectively), Na/K-ATPase, as well as to the nuclear transporters, importins-ß and exportins.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transporte Biológico/fisiologia , Canais de Cálcio/metabolismo , Linhagem Celular , Eletrofisiologia , Humanos , Microscopia de Fluorescência , Proteína ORAI1 , Proteínas Carreadoras de Solutos , Molécula 1 de Interação Estromal
5.
Nat Commun ; 2: 153, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21224844

RESUMO

Calcium signalling is critical for successful fertilization. In spermatozoa, capacitation, hyperactivation of motility and the acrosome reaction are all mediated by increases in intracellular Ca(2+). Cation channels of sperm proteins (CATSPERS1-4) form an alkalinization-activated Ca(2+)-selective channel required for the hyperactivated motility of spermatozoa and male fertility. Each of the CatSper1-4 genes encodes a subunit of a tetramer surrounding a Ca(2+)-selective pore, in analogy with other six-transmembrane ion channel α subunits. In addition to the pore-forming proteins, the sperm Ca(2+) channel contains auxiliary subunits, CATSPERß and CATSPERγ. Here, we identify the Tmem146 gene product as a novel subunit, CATSPERδ, required for CATSPER channel function. We find that mice lacking the sperm tail-specific CATSPERδ are infertile and their spermatozoa lack both Ca(2+) current and hyperactivated motility. We show that CATSPERδ is an essential element of the CATSPER channel complex and propose that CATSPERδ is required for proper CATSPER channel assembly and/or transport.

6.
Proc Natl Acad Sci U S A ; 105(24): 8304-8, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18539771

RESUMO

TRPM7, of the transient receptor potential (TRP) family, is both an ion channel and a kinase. Previously, we showed that TRPM7 is located in the membranes of acetylcholine (ACh)-secreting synaptic vesicles of sympathetic neurons, forms a molecular complex with proteins of the vesicular fusion machinery, and is critical for stimulated neurotransmitter release. Here, we targeted pHluorin to small synaptic-like vesicles (SSLV) in PC12 cells and demonstrate that it can serve as a single-vesicle plasma membrane fusion reporter. In PC12 cells, as in sympathetic neurons, TRPM7 is located in ACh-secreting SSLVs. TRPM7 knockdown by siRNA, or abolishing channel activity by expression of a dominant negative TRPM7 pore mutant, decreased the frequency of spontaneous and voltage-stimulated SSLV fusion events without affecting large dense core vesicle secretion. We conclude that the conductance of TRPM7 across the vesicle membrane is important in SSLV fusion.


Assuntos
Acetilcolina/metabolismo , Membrana Celular/fisiologia , Fusão de Membrana , Vesículas Sinápticas/fisiologia , Canais de Cátion TRPM/metabolismo , Animais , Transporte Biológico , Membrana Celular/enzimologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células PC12 , Fosfotransferases/genética , Fosfotransferases/metabolismo , RNA Interferente Pequeno/genética , Ratos , Vesículas Sinápticas/enzimologia , Canais de Cátion TRPM/genética , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
7.
Proc Natl Acad Sci U S A ; 104(4): 1219-23, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17227845

RESUMO

Mammalian spermatozoa become motile at ejaculation, but before they can fertilize the egg, they must acquire more thrust to penetrate the cumulus and zona pellucida. The forceful asymmetric motion of hyperactivated spermatozoa requires Ca2+ entry into the sperm tail by an alkalinization-activated voltage-sensitive Ca2+-selective current (ICatSper). Hyperactivation requires CatSper1 and CatSper2 putative ion channel genes, but the function of two other related genes (CatSper3 and CatSper4) is not known. Here we show that targeted disruption of murine CatSper3 or CatSper4 also abrogated ICatSper, sperm cell hyperactivated motility and male fertility but did not affect spermatogenesis or initial motility. Direct protein interactions among CatSpers, the sperm specificity of these proteins, and loss of ICatSper in each of the four CatSper-/- mice indicate that CatSpers are highly specialized flagellar proteins.


Assuntos
Canais de Cálcio/fisiologia , Fertilidade/fisiologia , Isoformas de Proteínas/fisiologia , Motilidade dos Espermatozoides/fisiologia , Animais , Masculino , Camundongos , Dados de Sequência Molecular
8.
Neuron ; 52(3): 485-96, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17088214

RESUMO

A longstanding hypothesis is that ion channels are present in the membranes of synaptic vesicles and might affect neurotransmitter release. Here we demonstrate that TRPM7, a member of the transient receptor potential (TRP) ion channel family, resides in the membrane of synaptic vesicles of sympathetic neurons, forms molecular complexes with the synaptic vesicle proteins synapsin I and synaptotagmin I, and directly interacts with synaptic vesicular snapin. In sympathetic neurons, changes in TRPM7 levels and channel activity alter acetylcholine release, as measured by EPSP amplitudes and decay times in postsynaptic neurons. TRPM7 affects EPSP quantal size, an intrinsic property of synaptic vesicle release. Targeted peptide interference of TRPM7's interaction with snapin affects the amplitudes and kinetics of postsynaptic EPSPs. Thus, vesicular TRPM7 channel activity is critical to neurotransmitter release in sympathetic neurons.


Assuntos
Acetilcolina/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Animais Recém-Nascidos , Western Blotting/métodos , Células Cultivadas , Cricetinae , Cricetulus , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Imunoeletrônica/métodos , Mutagênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Técnicas de Patch-Clamp/métodos , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Wistar , Gânglio Cervical Superior/citologia , Sinapses/classificação , Vesículas Sinápticas/ultraestrutura , Canais de Cátion TRPM/química , Transfecção/métodos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia
9.
Neuron ; 43(4): 563-74, 2004 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15312654

RESUMO

The synapse contains densely localized and interacting proteins that enable it to adapt to changing inputs. We describe a Ca2+-sensitive protein complex involved in the regulation of AMPA receptor synaptic plasticity. The complex is comprised of MUPPI, a multi-PDZ domain-containing protein; SynGAP, a synaptic GTPase-activating protein; and the Ca2+/calmodulin-dependent kinase CaMKII. In synapses of hippocampal neurons, SynGAP and CaMKII are brought together by direct physical interaction with the PDZ domains of MUPP1, and in this complex, SynGAP is phosphorylated. Ca2+CaM binding to CaMKII dissociates it from the MUPP1 complex, and Ca2+ entering via the NMDAR drives the dephosphorylation of SynGAP. Specific peptide-induced SynGAP dissociation from the MUPP1-CaMKII complex results in SynGAP dephosphorylation accompanied by P38 MAPK inactivation, potentiation of synaptic AMPA responses, and an increase in the number of AMPAR-containing clusters in hippocampal neuron synapses. siRNA-mediated SynGAP knockdown confirmed these results. These data implicate SynGAP in NMDAR- and CaMKII-dependent regulation of AMPAR trafficking.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteínas de Transporte/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas de Transporte/genética , Linhagem Celular , Proteínas Ativadoras de GTPase/genética , Hipocampo/enzimologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/fisiologia , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/enzimologia , Sinapses/genética , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Ativadoras de ras GTPase
10.
Neuron ; 40(4): 775-84, 2003 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-14622581

RESUMO

The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/genética , Sinapses/enzimologia , ras-GRF1/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação/genética , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Feto , Hipocampo/metabolismo , Humanos , Mutação/genética , N-Metilaspartato/farmacologia , Plasticidade Neuronal/genética , Técnicas de Cultura de Órgãos , Peptídeos/farmacologia , Estrutura Terciária de Proteína/genética , Ratos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica/genética , ras-GRF1/antagonistas & inibidores , ras-GRF1/genética
11.
J Biol Chem ; 278(40): 39014-9, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12857742

RESUMO

Mammalian short TRP channels (TRPCs) are putative receptor- and store-operated cation channels that play a fundamental role in the regulation of cellular Ca2+ homeostasis. Assembly of the seven TRPC homologs (TRPC1-7) into homo- and heteromers can create a large variety of different channels. However, the compositions as well as the functional properties of native TRPC complexes are largely undefined. We performed a systematic biochemical study of TRPC interactions in mammalian brain and identified previously unrecognized channel heteromers composed of TRPC1, TRPC4, or TRPC5 and the diacylglycerol-activated TRPC3 or TRPC6 subunits. The novel TRPC heteromers were found exclusively in embryonic brain. In heterologous systems, we demonstrated that assembly of these novel heteromers required the combination of TRPC1 plus TRPC4 or TRPC5 subunits along with diacylglycerol-sensitive subunits in the channel complexes. Functional interaction of the TRPC subunits was verified using a dominant negative TRPC5 mutant (TRPC5DN). Co-expression of TRPC5DN suppressed currents through TRPC5- and TRPC4-containing complexes; TRPC3-associated currents were unaffected by TRPC5DN unless TRPC1 was also co-expressed. This complex assembly mechanism increases the diversity of TRPC channels in mammalian brain and may generate novel heteromers that have specific roles in the developing brain.


Assuntos
Encéfalo/embriologia , Canais de Cálcio/química , Proteínas de Transporte de Cátions , Canais Iônicos/química , Animais , Western Blotting , Encéfalo/metabolismo , Cálcio/metabolismo , Carbacol/farmacologia , Cátions , Linhagem Celular , Membrana Celular/metabolismo , Clonagem Molecular , Diglicerídeos/química , Dimerização , Eletrofisiologia , Genes Dominantes , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Mutação , Testes de Precipitina , Ligação Proteica , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Ratos , Canais de Cátion TRPC , Canal de Cátion TRPC6 , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA