Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 4(3): 100519, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484704

RESUMO

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Vetores Genéticos/genética
2.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961518

RESUMO

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly-described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.

4.
J Mol Biol ; 435(13): 168120, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100169

RESUMO

In the ten years since the discovery of the first anti-CRISPR (Acr) proteins, the number of validated Acrs has expanded rapidly, as has our understanding of the diverse mechanisms they employ to suppress natural CRISPR-Cas immunity. Many, though not all, function via direct, specific interaction with Cas protein effectors. The abilities of Acr proteins to modulate the activities and properties of CRISPR-Cas effectors have been exploited for an ever-increasing spectrum of biotechnological uses, most of which involve the establishment of control over genome editing systems. This control can be used to minimize off-target editing, restrict editing based on spatial, temporal, or conditional cues, limit the spread of gene drive systems, and select for genome-edited bacteriophages. Anti-CRISPRs have also been developed to overcome bacterial immunity, facilitate viral vector production, control synthetic gene circuits, and other purposes. The impressive and ever-growing diversity of Acr inhibitory mechanisms will continue to allow the tailored applications of Acrs.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Biotecnologia
5.
Nat Commun ; 13(1): 6286, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271076

RESUMO

A GGGGCC24+ hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), fatal neurodegenerative diseases with no cure or approved treatments that substantially slow disease progression or extend survival. Mechanistic underpinnings of neuronal death include C9ORF72 haploinsufficiency, sequestration of RNA-binding proteins in the nucleus, and production of dipeptide repeat proteins. Here, we used an adeno-associated viral vector system to deliver CRISPR/Cas9 gene-editing machineries to effectuate the removal of the HRE from the C9ORF72 genomic locus. We demonstrate successful excision of the HRE in primary cortical neurons and brains of three mouse models containing the expansion (500-600 repeats) as well as in patient-derived iPSC motor neurons and brain organoids (450 repeats). This resulted in a reduction of RNA foci, poly-dipeptides and haploinsufficiency, major hallmarks of C9-ALS/FTD, making this a promising therapeutic approach to these diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Sistemas CRISPR-Cas , Neurônios Motores/metabolismo , Dipeptídeos/metabolismo , RNA/metabolismo
6.
J Immunol ; 204(3): 644-659, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862711

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to be a major global health problem. Lung granulomas are organized structures of host immune cells that function to contain the bacteria. Cytokine expression is a critical component of the protective immune response, but inappropriate cytokine expression can exacerbate TB. Although the importance of proinflammatory cytokines in controlling M. tuberculosis infection has been established, the effects of anti-inflammatory cytokines, such as IL-10, in TB are less well understood. To investigate the role of IL-10, we used an Ab to neutralize IL-10 in cynomolgus macaques during M. tuberculosis infection. Anti-IL-10-treated nonhuman primates had similar overall disease outcomes compared with untreated control nonhuman primates, but there were immunological changes in granulomas and lymph nodes from anti-IL-10-treated animals. There was less thoracic inflammation and increased cytokine production in lung granulomas and lymph nodes from IL-10-neutralized animals at 3-4 wk postinfection compared with control animals. At 8 wk postinfection, lung granulomas from IL-10-neutralized animals had reduced cytokine production but increased fibrosis relative to control animals. Although these immunological changes did not affect the overall disease burden during the first 8 wk of infection, we paired computational modeling to explore late infection dynamics. Our findings support that early changes occurring in the absence of IL-10 may lead to better bacterial control later during infection. These unique datasets provide insight into the contribution of IL-10 to the immunological balance necessary for granulomas to control bacterial burden and disease pathology in M. tuberculosis infection.


Assuntos
Granuloma/imunologia , Inflamação/imunologia , Interleucina-10/metabolismo , Pulmão/patologia , Linfonodos/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade , Pulmão/imunologia , Macaca fascicularis , Fibrose Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA