RESUMO
An increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.a. Dias-Logan syndrome) ascertained through an international collaborative network, and reviewed 35 additional previously reported patients. Analysis of 77 affected individuals identified 60 unique disease-causing variants (30 frameshift, 7 missense, 6 splice-site, 17 stop-gain) and 8 unique BCL11A microdeletions. We define the most prevalent features of BCL11A-IDD: IDD, postnatal-onset microcephaly, hypotonia, behavioral abnormalities, autism spectrum disorder, and persistence of fetal hemoglobin (HbF), and identify autonomic dysregulation as new feature. BCL11A-IDD is distinguished from 2p16 microdeletion syndrome, which has a higher incidence of congenital anomalies. Our results underscore BCL11A as an important transcription factor in human hindbrain development, identifying a previously underrecognized phenotype of a small brainstem with a reduced pons/medulla ratio. Genotype-phenotype correlation revealed an isoform-dependent trend in severity of truncating variants: those affecting all isoforms are associated with higher frequency of hypotonia, and those affecting the long (BCL11A-L) and extra-long (-XL) isoforms, sparing the short (-S), are associated with higher frequency of postnatal microcephaly. With the largest international cohort to date, this study highlights persistence of fetal hemoglobin as a consistent biomarker and hindbrain abnormalities as a common feature. It contributes significantly to our understanding of BCL11A-IDD through an extensive unbiased multi-center assessment, providing valuable insights for diagnosis, management and counselling, and into BCL11A's role in brain development.
RESUMO
Pathogenic heterozygous variants in CACNA1A are associated with familial hemiplegic migraine, episodic ataxia type 2 and spinocerebellar ataxia type 6, and more recently, neurodevelopmental disorders. We describe a severe, early-onset phenotype including severe muscular hypotonia, early-onset epileptic seizures, apnoea, optic atrophy and dysphagia in three siblings carrying compound heterozygous frameshift variants in CACNA1A. Two male patients died at the age of 5 or 14 months of suspected SIDS or severe developmental epileptic encephalopathy (DEE) with refractory seizures and apnoea. A male child (index patient) developed severe early-onset DEE including seizures and ictal apnoea at the age of 4 weeks. Another male child developed generalized epilepsy and mild intellectual impairment in late infancy, and his mother and his maternal uncle were identified as carriers of a known CACNA1A pathogenic variant [c.2602delG heterozygous, p. (Ala868Profs*24)] with a diagnosis of episodic ataxia type 2. This maternal pathogenic variant c.2602delG was detected in the index patient and child 2. Trio-Exome sequencing identified an additional heterozygous pathogenic variant in the CACNA1A gene, c.5476delC, p.(His1826Thrfs*30) in the index patient and child 2, which was inherited from the asymptomatic father. In conclusion, the novel compound heterozygosity for two frameshift pathogenic variants, maternally [c.2602delG, p.(Ala868Profs*24)] and paternally [c.5476delC, p.(His1826Thrfs*3)] is associated with a severe phenotype of early-onset DEE. This observation highlights the necessity of additional analyses to clarify unusual phenotypes even if a pathogenic variant has already been identified, and expands the clinical spectrum of CACNA1A-related disorders.
RESUMO
CTNND2 encodes δ-catenin, a component of an adherens junction complex, and plays an important role in neuronal structure and function. To date, only heterozygous loss-of-function CTNND2 variants have been associated with mild neurodevelopmental delay and behavioral anomalies, a condition, which we named Rauch-Azzarello syndrome. Here, we report three siblings of a consanguineous family of Syrian descent with a homozygous deletion encompassing the last 19 exons of CTNND2 predicted to disrupt the transcript. All presented with severe neurodevelopmental delay with absent speech, profound motor delay, stereotypic behavior, microcephaly, short stature, muscular hypotonia with lower limb hypertonia, and variable eye anomalies. The parents and the fourth sibling were heterozygous carriers of the deletion and exhibited mild neurodevelopmental impairment resembling that of the previously described heterozygous individuals. The present study unveils a severe manifestation of CTNND2-associated Rauch-Azzarello syndrome attributed to biallelic loss-of-function aberrations, clinically distinct from the already described mild presentation of heterozygous individuals. Furthermore, we demonstrate novel clinical features in homozygous individuals that have not been reported in heterozygous cases to date.
Assuntos
delta Catenina , Transtornos do Neurodesenvolvimento , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Alelos , Cateninas/genética , Consanguinidade , Homozigoto , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Deleção de Sequência/genéticaRESUMO
Psoriasis is a common, debilitating immune-mediated skin disease. Genetic studies have identified biological mechanisms of psoriasis risk, including those targeted by effective therapies. However, the genetic liability to psoriasis is not fully explained by variation at robustly identified risk loci. To move towards a saturation map of psoriasis susceptibility we meta-analysed 18 GWAS comprising 36,466 cases and 458,078 controls and identified 109 distinct psoriasis susceptibility loci, including 45 that have not been previously reported. These include susceptibility variants at loci in which the therapeutic targets IL17RA and AHR are encoded, and deleterious coding variants supporting potential new drug targets (including in STAP2, CPVL and POU2F3). We conducted a transcriptome-wide association study to identify regulatory effects of psoriasis susceptibility variants and cross-referenced these against single cell expression profiles in psoriasis-affected skin, highlighting roles for the transcriptional regulation of haematopoietic cell development and epigenetic modulation of interferon signalling in psoriasis pathobiology.
RESUMO
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.
Assuntos
Ceramidas , Esfingolipídeos , Humanos , Ceramidas/metabolismo , Homeostase , Mutação , Esfingolipídeos/genética , Esfingolipídeos/metabolismoRESUMO
We report on a female individual with feeding difficulties, constipation, poor overall growth, periventricular lesions resembling gliosis in brain MRI, recurrent otitis media with palsy of facial nerve, distinct facial features, and pronounced delay in speech development. The latter was the most prominent feature. Molecular karyotyping revealed a heterozygous de novo deletion of 4.353 Mb at chromosome 12q21.33q22. This report expands the number of described individuals with heterozygous deletions at 12q21.33, their clinical spectrum and highlights the clinical variability, even in individuals with deletion of the same genes. Furthermore, our findings indicate a role of BTG1 (OMIM *109580) in speech development.
Assuntos
Deleção Cromossômica , Deficiências do Desenvolvimento , Criança , Humanos , Feminino , Deficiências do Desenvolvimento/genética , Fala , Fenótipo , Cariotipagem , Proteínas de Neoplasias/genéticaRESUMO
While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs - the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.
Assuntos
Longevidade , Neoplasias , Humanos , Cães , Animais , Longevidade/genética , Variação GenéticaRESUMO
Hereditary chronic kidney disease (CKD) appears to be more frequent than the clinical perception. Exome sequencing (ES) studies in CKD cohorts could identify pathogenic variants in ~10% of individuals. Tubulointerstitial kidney diseases, showing no typical clinical/histologic finding but tubulointerstitial fibrosis, are particularly difficult to diagnose. We used a targeted panel (29 genes) and MUC1-SNaPshot to sequence 271 DNAs, selected in defined disease entities and age cutoffs from 5217 individuals in the German Chronic Kidney Disease cohort. We identified 33 pathogenic variants. Of these 27 (81.8%) were in COL4A3/4/5, the largest group being 15 COL4A5 variants with nine unrelated individuals carrying c.1871G>A, p.(Gly624Asp). We found three cysteine variants in UMOD, a novel missense and a novel splice variant in HNF1B and the homoplastic MTTF variant m.616T>C. Copy-number analysis identified a heterozygous COL4A5 deletion, and a HNF1B duplication/deletion, respectively. Overall, pathogenic variants were present in 12.5% (34/271) and variants of unknown significance in 9.6% (26/271) of selected individuals. Bioinformatic predictions paired with gold standard diagnostics for MUC1 (SNaPshot) could not identify the typical cytosine duplication ("c.428dupC") in any individual, implying that ADTKD-MUC1 is rare. Our study shows that >10% of selected individuals carry disease-causing variants in genes partly associated with tubulointerstitial kidney diseases. COL4A3/4/5 genes constitute the largest fraction, implying they are regularly overlooked using clinical Alport syndrome criteria and displaying the existence of phenocopies. We identified variants easily missed by some ES pipelines. The clinical filtering criteria applied enriched for an underlying genetic disorder.
Assuntos
Nefrite Hereditária , Nefrite Intersticial , Insuficiência Renal Crônica , Humanos , Prevalência , Nefrite Hereditária/genética , Nefrite Intersticial/epidemiologia , Nefrite Intersticial/genética , Nefrite Intersticial/diagnóstico , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , MutaçãoRESUMO
TCF4 haploinsufficiency by deletions, truncating variants or loss-of-function missense variants within the DNA-binding and protein interacting bHLH domain causes Pitt-Hopkins syndrome (PTHS). This neurodevelopmental disorder (NDD) is characterized by severe intellectual disability (ID), epilepsy, hyperbreathing and a typical facial gestalt. Only few aberrations of the N-terminus of TCF4 were associated with milder or atypical phenotypes. By personal communication and searching databases we assembled six cases with the novel, recurrent, de novo missense variant c.1165C > T, p.(Arg389Cys) in TCF4. This variant was identified by diagnostic exome or panel sequencing and is located upstream of the bHLH domain. All six individuals presented with moderate to severe ID with language impairment. Microcephaly occurred in two individuals, epilepsy only in one, and no breathing anomalies or myopia were reported. Facial gestalt showed some aspects of PTHS but was rather non-specific in most individuals. Interestingly, the variant is located within the AD2 activation domain next to a highly conserved coactivator-recruitment motif and might alter interaction with coactivator proteins independently from the bHLH domain. Our findings of a recurrent missense variant outside the bHLH domain in six individuals with an ID phenotype overlapping with but not typical for PTHS delineate a novel genotype-phenotype correlation for TCF4-related NDDs.
Assuntos
Epilepsia , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Fator de Transcrição 4/genética , Fácies , Hiperventilação/diagnósticoRESUMO
Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG) is a rare metabolic disease mainly characterized by psychomotor disability, visual impairment, and variable eye malformations caused by bi-allelic pathogenic variants in SRD5A3. So far, only 23 distinct mutations were described. Exome sequencing in 32-year old monozygotic male twins revealed only the heterozygous splice variant c.562+3delG in SRD5A3, but no second variant. The twins presented with psychomotor deficit and a complex eye disease including retinal dystrophy, pallor of the papilla, nystagmus, and strabismus suggestive of SRD5A3-CDG. Only when applying exome-based copy number analysis, we identified as a second compound heterozygous variant a previously not reported tandem duplication of exons 2-4 in SRD5A3. Next to the typical skeletal anomalies of SRD5A3-CDG such as kyphosis and scoliosis, extension deficits of the proximal interphalangeal (PIP) joints IV were observed. Since similar contractures were described once in a patient with SRD5A3-CDG, we suggest that this rare symptom is possibly associated with SRD5A3-CDG. Our findings further expand the mutational and clinical spectrum of SRD5A3-CDG and emphasize the importance of an intragenic copy number analysis in patients with strong clinical suspicion of SRD5A3-CDG and only one detectable sequence variant.
Assuntos
Defeitos Congênitos da Glicosilação , Distrofias Retinianas , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Adulto , Defeitos Congênitos da Glicosilação/patologia , Exoma , Humanos , Masculino , Proteínas de Membrana/genética , Mutação , Distrofias Retinianas/genéticaRESUMO
Cohen-Gibson syndrome is a rare genetic disorder, characterized by fetal or early childhood overgrowth and mild to severe intellectual disability. It is caused by heterozygous aberrations in EED, which encodes an evolutionary conserved polycomb group (PcG) protein that forms the polycomb repressive complex-2 (PRC2) together with EZH2, SUZ12, and RBBP7/4. In total, 11 affected individuals with heterozygous pathogenic variants in EED were reported, so far. All variants affect a few key residues within the EED WD40 repeat domain. By trio exome sequencing, we identified the heterozygous missense variant c.581A > G, p.(Asn194Ser) in exon 6 of the EED-gene in an individual with moderate intellectual disability, overgrowth, and epilepsy. The same pathogenic variant was detected in 2 of the 11 previously reported cases. Epilepsy, however, was only diagnosed in one other individual with Cohen-Gibson syndrome before. Our findings further confirm that the WD40 repeat domain represents a mutational hotspot; they also expand the clinical spectrum of Cohen-Gibson syndrome and highlight the clinical variability even in individuals with the same pathogenic variant. Furthermore, they indicate a possible association between Cohen-Gibson syndrome and epilepsy.
Assuntos
Epilepsia , Deficiência Intelectual , Pré-Escolar , Epilepsia/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Complexo Repressor Polycomb 2/genética , Sequenciamento do ExomaRESUMO
Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) cause a diverse spectrum of autosomal recessive disorders. Tyrosyl tRNA synthetase (TyrRS) is encoded by YARS1 (cytosolic, OMIM*603,623) and is responsible of coupling tyrosine to its specific tRNA. Next to the enzymatic domain, TyrRS has two additional functional domains (N-Terminal TyrRSMini and C-terminal EMAP-II-like domain) which confer cytokine-like functions. Mutations in YARS1 have been associated with autosomal-dominant Charcot-Marie-Tooth (CMT) neuropathy type C and a heterogenous group of autosomal recessive, multisystem diseases. We identified 12 individuals from 6 families with the recurrent homozygous missense variant c.1099C > T;p.(Arg367Trp) (NM_003680.3) in YARS1. This variant causes a multisystem disorder with developmental delay, microcephaly, failure to thrive, short stature, muscular hypotonia, ataxia, brain anomalies, microcytic anemia, hepatomegaly, and hypothyroidism. In silico analyses show that the p.(Arg367Trp) does not affect the catalytic domain responsible of enzymatic coupling, but destabilizes the cytokine-like C-terminal domain. The phenotype associated with p.(Arg367Trp) is distinct from the other biallelic pathogenic variants that reside in different functional domains of TyrRS which all show some common, but also divergent clinical signs [(e.g., p.(Phe269Ser)-retinal anomalies, p.(Pro213Leu)/p.(Gly525Arg)-mild ID, p.(Pro167Thr)-high fatality)]. The diverse clinical spectrum of ARS1-associated disorders is related to mutations affecting the various non-canonical domains of ARS1, and impaired protein translation is likely not the exclusive disease-causing mechanism of YARS1- and ARS1-associated neurodevelopmental disorders. KEY MESSAGES: The missense variant p.(Arg367Trp) in YARS1 causes a distinct multisystem disorder. p.(Arg367Trp) affects a non-canonical domain with cytokine-like functions. Phenotypic heterogeneity associates with the different affected YARS1 domains. Impaired protein translation is likely not the exclusive mechanism of ARS1-associated disorders.
Assuntos
Transtornos do Neurodesenvolvimento/genética , Tirosina-tRNA Ligase/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Fenótipo , Conformação Proteica , Tirosina-tRNA Ligase/química , Sequenciamento do ExomaRESUMO
CONTEXT: CPE encodes carboxypeptidase E, an enzyme that converts proneuropeptides and propeptide hormones to bioactive forms. It is widely expressed in the endocrine and central nervous system. To date, 4 individuals from 2 families with core clinical features including morbid obesity, neurodevelopmental delay, and hypogonadotropic hypogonadism, harboring biallelic loss-of-function (LoF) CPE variants, have been reported. OBJECTIVE: We describe 4 affected individuals from 3 unrelated consanguineous families, 2 siblings of Syrian, 1 of Egyptian, and 1 of Pakistani descent, all harboring novel homozygous CPE LoF variants. METHODS: After excluding Prader-Willi syndrome (PWS), exome sequencing was performed in both Syrian siblings. The variants identified in the other 2 individuals were reported as research variants in a large-scale exome study and in the ClinVar database. Computational modeling of all possible missense alterations allowed assessing CPE tolerance to missense variants. RESULTS: All affected individuals were severely obese with neurodevelopmental delay and other endocrine anomalies. Three individuals from 2 families shared the same CPE homozygous truncating variant c.361Câ >â T, p.(Arg121*), while the fourth carried the c.994del, p.(Ser333Alafs*22) variant. Comparison of clinical features with previously described cases and standardization according to the Human Phenotype Ontology terms indicated a recognizable clinical phenotype, which we termed Blakemore-Durmaz-Vasileiou (BDV) syndrome. Computational analysis indicated high conservation of CPE domains and intolerance to missense changes. CONCLUSION: Biallelic truncating CPE variants are associated with BDV syndrome, a clinically recognizable monogenic recessive syndrome with childhood-onset obesity, neurodevelopmental delay, hypogonadotropic hypogonadism, and hypothyroidism. BDV syndrome resembles PWS. Our findings suggest missense variants may also be clinically relevant.
Assuntos
Carboxipeptidase H/genética , Hipogonadismo/patologia , Hipotireoidismo/patologia , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/patologia , Obesidade/patologia , Síndrome de Prader-Willi/diagnóstico , Adolescente , Alelos , Criança , Feminino , Humanos , Hipogonadismo/genética , Hipotireoidismo/genética , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/genética , Obesidade/genética , Linhagem , Prognóstico , SíndromeRESUMO
PRICKLE2 encodes a member of a highly conserved family of proteins that are involved in the non-canonical Wnt and planar cell polarity signaling pathway. Prickle2 localizes to the post-synaptic density, and interacts with post-synaptic density protein 95 and the NMDA receptor. Loss-of-function variants in prickle2 orthologs cause seizures in flies and mice but evidence for the role of PRICKLE2 in human disease is conflicting. Our goal is to provide further evidence for the role of this gene in humans and define the phenotypic spectrum of PRICKLE2-related disorders. We report a cohort of six subjects from four unrelated families with heterozygous rare PRICKLE2 variants (NM_198859.4). Subjects were identified through an international collaboration. Detailed phenotypic and genetic assessment of the subjects were carried out and in addition, we assessed the variant pathogenicity using bioinformatic approaches. We identified two missense variants (c.122 C > T; p.(Pro41Leu), c.680 C > G; p.(Thr227Arg)), one nonsense variant (c.214 C > T; p.(Arg72*) and one frameshift variant (c.1286_1287delGT; p.(Ser429Thrfs*56)). While the p.(Ser429Thrfs*56) variant segregated with disease in a family with three affected females, the three remaining variants occurred de novo. Subjects shared a mild phenotype characterized by global developmental delay, behavioral difficulties ± epilepsy, autistic features, and attention deficit hyperactive disorder. Computational analysis of the missense variants suggest that the altered amino acid residues are likely to be located in protein regions important for function. This paper demonstrates that PRICKLE2 is involved in human neuronal development and that pathogenic variants in PRICKLE2 cause neurodevelopmental delay, behavioral difficulties and epilepsy in humans.
Assuntos
Deficiências do Desenvolvimento/genética , Proteínas com Domínio LIM/genética , Proteínas de Membrana/genética , Adolescente , Adulto , Idoso , Criança , Códon sem Sentido , Deficiências do Desenvolvimento/patologia , Feminino , Mutação da Fase de Leitura , Humanos , Proteínas com Domínio LIM/química , Masculino , Proteínas de Membrana/química , Mutação de Sentido Incorreto , Fenótipo , Domínios ProteicosRESUMO
BACKGROUND: We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder. METHODS: Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays. RESULTS: We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype. CONCLUSIONS: Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , RNA Helicases/genética , Animais , Biomarcadores , Expressão Gênica , Técnicas de Silenciamento de Genes , Estudos de Associação Genética/métodos , Mutação em Linhagem Germinativa , Células HEK293 , Humanos , Imuno-Histoquímica , Mutação , Fenótipo , RNA Helicases/química , RNA Helicases/metabolismo , Peixe-ZebraRESUMO
BACKGROUND: An identical homozygous missense variant in EIF3F, identified through a large-scale genome-wide sequencing approach, was reported as causative in nine individuals with a neurodevelopmental disorder, characterized by variable intellectual disability, epilepsy, behavioral problems and sensorineural hearing-loss. To refine the phenotypic and molecular spectrum of EIF3F-related neurodevelopmental disorder, we examined independent patients. RESULTS: 21 patients were homozygous and one compound heterozygous for c.694T>G/p.(Phe232Val) in EIF3F. Haplotype analyses in 15 families suggested that c.694T>G/p.(Phe232Val) was a founder variant. All affected individuals had developmental delays including delayed speech development. About half of the affected individuals had behavioral problems, altered muscular tone, hearing loss, and short stature. Moreover, this study suggests that microcephaly, reduced sensitivity to pain, cleft lip/palate, gastrointestinal symptoms and ophthalmological symptoms are part of the phenotypic spectrum. Minor dysmorphic features were observed, although neither the individuals' facial nor general appearance were obviously distinctive. Symptoms in the compound heterozygous individual with an additional truncating variant were at the severe end of the spectrum in regard to motor milestones, speech delay, organic problems and pre- and postnatal growth of body and head, suggesting some genotype-phenotype correlation. CONCLUSIONS: Our study refines the phenotypic and expands the molecular spectrum of EIF3F-related syndromic neurodevelopmental disorder.
Assuntos
Fenda Labial , Fissura Palatina , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Fator de Iniciação 3 em Eucariotos , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genéticaRESUMO
PPP2R5D-related neurodevelopmental disorder (NDD) is a rare autosomal-dominant disease with developmental delay and mild to severe intellectual disability. So far, fewer than 30 affected individuals with mostly recurrent, de novo missense variants in PPP2R5D were reported. Recently, parkinsonism with an onset between 20 and 40 years was reported in four adult individuals with the same p.(Glu200Lys) variant in PPP2R5D. By trio exome sequencing we now identified the variant p.(Glu198Lys) in a 29 year old woman presenting with typical clinical manifestations of PPP2R5D-related neurodevelopmental disorder and additionally with motor decline and levodopa responsive, early-onset parkinsonism from her mid-twenties on. Accordingly, a clear reduction of dopamine transporter in the striatum on both sides was revealed by brain scintigraphy. Our findings further expand the molecular and clinical spectrum of PPP2R5D-related NDD and confirm the association with parkinsonism in early adulthood. This has marked implications for prognosis of PPP2R5D-related NDDs and for the therapeutic management of motor decline and parkinson-like symptoms in affected individuals.
Assuntos
Transtornos Parkinsonianos/genética , Proteína Fosfatase 2/genética , Idade de Início , Antiparkinsonianos/uso terapêutico , Corpo Estriado/diagnóstico por imagem , Feminino , Humanos , Levodopa/uso terapêutico , Mutação de Sentido Incorreto , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Fenótipo , Adulto JovemRESUMO
PURPOSE: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority. METHODS: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC. RESULTS: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-associated missense variants. We report p.Asp724 as second mutational hotspot (4/19 cases). Genotype-phenotype correlation confirms a consistently severe phenotype in p.Arg87 patients but a more variable phenotype in p.Asp724 and other substitutions. Three individuals with milder phenotypes carry putative loss-of-function variants, which remain of unclear pathogenicity. Structural modeling predicted missense variants to disturb interactions within the WRC or impair CYFIP2 stability. Consistent with its role in WRC-mediated actin polymerization we substantiate aberrant regulation of the actin cytoskeleton in patient fibroblasts. CONCLUSION: Our study expands the clinical and molecular spectrum of CYFIP2-related neurodevelopmental disorder and provides evidence for aberrant WRC-mediated actin dynamics as contributing cellular pathomechanism.