RESUMO
The entorhinal cortex (EC) is the main interface between the sensory association areas of the neocortex and the hippocampus. It is crucial for the evaluation and processing of sensory data for long-term memory consolidation and shows damage in many brain diseases, for example, neurodegenerative diseases, such as Alzheimer's disease and developmental disorders. The pre-alpha layer of the EC in humans (layer II) displays a remarkable distribution of neurons in islands. These cellular islands give rise to a portion of the perforant path-the major reciprocal data stream for neocortical information into the hippocampal formation. However, the functional relevance of the morphological appearance of the pre-alpha layer in cellular islands and the precise timing of their initial appearance during primate evolution are largely unknown. Here, we conducted a comparative study of the EC from 38 nonhuman primates and Homo sapiens and found a strong relationship between gyrification index (GI) and the presence of the pre-alpha cellular islands. The formation of cellular islands also correlated with brain and body weight as well as neopallial volume. In the two human lissencephalic cases, the cellular islands in the pre-alpha layer were lacking. These findings emphasize the relationship between cortical folding and island formation in the EC from an evolutionary perspective and suggest a role in the pathomechanism of developmental brain disorders.
Assuntos
Córtex Entorrinal , Lisencefalia , Animais , Córtex Entorrinal/anatomia & histologia , Hipocampo/anatomia & histologia , PrimatasRESUMO
Deregulated cell death pathways contribute to leukemogenesis and treatment failure in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Intrinsic apoptosis signaling is regulated by different proapoptotic and antiapoptotic molecules: proapoptotic BCL-2 homology domain 3 (BH3) proteins activate prodeath molecules leading to cellular death, while antiapoptotic molecules including B-cell lymphoma 2 (BCL-2) prevent activation of prodeath proteins and counter-regulate apoptosis induction. Inhibition of these antiapoptotic regulators has become a promising strategy for anticancer treatment, but variable anticancer activities in different malignancies indicate the need for upfront identification of responsive patients. Here, we investigated the activity of the BCL-2 inhibitor venetoclax (VEN, ABT-199) in B-cell precursor acute lymphoblastic leukemia and found heterogeneous sensitivities in BCP-ALL cell lines and in a series of patient-derived primografts. To identify parameters of sensitivity and resistance, we evaluated genetic aberrations, gene-expression profiles, expression levels of apoptosis regulators, and functional apoptosis parameters analyzed by mitochondrial profiling using recombinant BH3-like peptides. Importantly, ex vivo VEN sensitivity was most accurately associated with functional BCL-2 dependence detected by BH3 profiling. Modeling clinical application of VEN in a preclinical trial in a set of individual ALL primografts, we identified that leukemia-free survival of VEN treated mice was precisely determined by functional BCL-2 dependence. Moreover, the predictive value of ex vivo measured functional BCL-2 dependence for preclinical in vivo VEN response was confirmed in an independent set of primograft ALL including T- and high risk-ALL. Thus, integrative analysis of the apoptosis signaling indicating mitochondrial addiction to BCL-2 accurately predicts antileukemia activity of VEN, robustly identifies VEN-responsive patients, and provides information for stratification and clinical guidance in future clinical applications of VEN in patients with ALL.
Assuntos
Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transdução de Sinais/efeitos dos fármacosRESUMO
We investigated the engraftment properties and impact on patient outcome of 50 pediatric acute lymphoblastic leukemia (ALL) samples transplanted into NOD/SCID mice. Time to leukemia (TTL) was determined for each patient sample engrafted as weeks from transplant to overt leukemia. Short TTL was strongly associated with high risk for early relapse, identifying an independent prognostic factor. This high-risk phenotype is reflected by a gene signature that upon validation in an independent patient cohort (n = 197) identified a high-risk cluster of patients with early relapse. Furthermore, the signature points to independent pathways, including mTOR, involved in cell growth and apoptosis. The pathways identified can directly be targeted, thereby offering additional treatment approaches for these high-risk patients.