Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7964): 316-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225981

RESUMO

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Assuntos
Biodiversidade , Produtos Agrícolas , Recuperação e Remediação Ambiental , Óleo de Palmeira , Árvores , Florestas , Óleo de Palmeira/provisão & distribuição , Árvores/fisiologia , Agricultura/métodos , Nações Unidas , Clima Tropical , Produtos Agrícolas/provisão & distribuição , Recuperação e Remediação Ambiental/métodos
2.
PLoS One ; 14(10): e0224520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31652281

RESUMO

Land-use change is threatening biodiversity worldwide, affecting above and below ground animal communities by altering their trophic niches. However, shifts in trophic niches with changes in land use are little studied and this applies in particular to belowground animals. Oribatid mites are among the most abundant soil animals, involved in decomposition processes and nutrient cycling. We analyzed shifts in trophic niches of six soil-living oribatid mite species with the conversion of lowland secondary rainforest into plantation systems of different land-use intensity (jungle rubber, rubber and oil palm monoculture plantation) in two regions of southwest Sumatra, Indonesia. We measured stable isotope ratios (13C/12C and 15N/14N) of single oribatid mite individuals and calculated shifts in stable isotope niches with changes in land use. Significant changes in stable isotope ratios in three of the six studied oribatid mite species indicated that these species shift their trophic niches with changes in land use. The trophic shift was either due to changes in trophic level (δ15N values), to changes in the use of basal resources (δ13C values) or to changes in both. The trophic shift generally was most pronounced between more natural systems (rainforest and jungle rubber) on one side and monoculture plantations systems (rubber and oil palm plantations) on the other, reflecting that the shifts were related to land-use intensity. Although trophic niches of the other three studied species did not differ significantly between land-use systems they followed a similar trend. Overall, the results suggest that colonization of very different ecosystems such as rainforest and intensively managed monoculture plantations by oribatid mite species likely is related to their ability to shift their trophic niches, i.e. to trophic plasticity.


Assuntos
Artrópodes , Isótopos de Carbono , Isótopos de Nitrogênio , Floresta Úmida , Solo , Clima Tropical , Animais
3.
Exp Appl Acarol ; 70(4): 439-453, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27785647

RESUMO

Convergent evolution is one of the main drivers of traits and phenotypes in animals and plants. Here, we investigated the minimum number of independent colonisations of marine and freshwater habitats in derived oribatid mites (Brachypylina), a mainly terrestrial taxon. Furthermore, we investigated whether the reproductive mode (sexual vs. thelytokous) is associated with the habitat type (marine, freshwater) where the animals live. We hypothesized that continuous resource availability in freshwater systems fosters asexual reproduction. We used 18S rDNA sequences to construct a molecular phylogeny of oribatid mites from terrestrial, marine and freshwater habitats. The results indicate that aquatic life in oribatid mites evolved at least 3×: once in Limnozetoidea (including only freshwater taxa) and at least twice in Ameronothroidea. In Ameronothroidea the taxon Ameronothridae n. gen. (nr. Aquanothrus) colonized fresh water independently from Selenoribatidae and Fortuyniidae (mainly marine Ameronothroidea). Reproductive mode was associated neither with marine nor with freshwater life; rather, in both habitats sexual and parthenogenetic taxa occur. However, the reproductive mode was related to the stability of the habitat. Species that live underwater permanently tend to be parthenogenetic whereas taxa whose life cycle is often interrupted by flooding, such as marine oribatid mites, or by desiccation, e.g., freshwater-living Ameronothridae n. gen. (nr. Aquanothrus) (Ameronothroidea) species, are mainly sexual, indicating that continuous access to resources indeed favours parthenogenetic reproduction. Findings of our study therefore suggest that parthenogenetic reproduction is not selected for by disturbances but by unlimited access to resources.


Assuntos
Evolução Biológica , Ecossistema , Ácaros/fisiologia , Animais , Ácaros/genética , Partenogênese , RNA Ribossômico 18S/genética , Reprodução , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA