Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127424

RESUMO

Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds. We find that apoptotic pathways and efferocytosis receptors are elevated in fibroblasts and immune cells, including resident Lyve1+ macrophages, during inflammation. Interestingly, human diabetic foot wounds upregulate mRNAs for efferocytosis pathway genes and display altered efferocytosis signaling via the receptor Axl and its ligand Gas6. During early inflammation in mouse wounds, we detect upregulation of Axl in dendritic cells and fibroblasts via TLR3-independent mechanisms. Inhibition studies in vivo in mice reveal that Axl signaling is required for wound repair but is dispensable for efferocytosis. By contrast, inhibition of another efferocytosis receptor, Timd4, in mouse wounds decreases efferocytosis and abrogates wound repair. These data highlight the distinct mechanisms by which apoptotic cell detection coordinates tissue repair and provides potential therapeutic targets for chronic wounds in diabetic patients.


Our skin is constantly exposed to potential damage from the outside world, and it is vital that any injuries are repaired quickly and effectively. Diabetes and many other health conditions can hamper wound healing, resulting in chronic wounds that are both painful and at risk of becoming infected, which can lead to serious illness and death of patients. After an injury to the skin, the wound becomes inflamed as immune cells rush to the site of injury to fight off infection and clear the wound of dead cells and debris. Some of these dead cells will have died by a highly controlled process known as apoptosis. These so-called apoptotic cells display signals on their surface that nearby healthy cells recognize. This triggers the healthy cells to eat the apoptotic cells to remove them from the wound. Previous studies have linked changes in cell death and the removal of dead cells to chronic wounds in patients with diabetes, but it remains unclear how removing dead cells from the wound affects healing. Justynski et al. used a genetic technique called single-cell RNA sequencing to study the patterns of gene activity in mouse skin cells shortly after a wound. The experiments found that, as the area around the wound started to become inflamed, the wounded cells produced signals of apoptosis that in turn triggered nearby healthy cells to remove them. Other signals relating to the removal of dead cells were also widespread in the mouse wounds and treating the wounds with drugs that inhibit these signals resulted in multiple defects in the healing process. Further experiments used the same approach to study samples of tissue taken from foot wounds in human patients with or without diabetes. This revealed that several genes involved in the removal of dead cells were more highly expressed in the wounds of diabetic patients than in the wounds of other individuals. These findings indicate that for wounds to heal properly it is crucial for the body to detect and clear apoptotic cells from the wound site. Further studies building on this work may help to explain why some diabetic patients suffer from chronic wounds and help to develop more effective treatments for them.


Assuntos
Apoptose , Eferocitose , Humanos , Animais , Camundongos , Apoptose/genética , Fibroblastos , Inflamação , Inibição Psicológica
2.
bioRxiv ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36711968

RESUMO

Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds. We find that apoptotic pathways and efferocytosis receptors are elevated in fibroblasts and immune cells, including resident Lyve1 + macrophages, during inflammation. Interestingly, human diabetic foot wounds upregulate mRNAs for apoptotic genes and display increased and altered efferocytosis signaling via the receptor Axl. During early inflammation in mouse wounds, we detect upregulation of Axl in dendritic cells and fibroblasts via TLR3-independent mechanisms. Inhibition studies in vivo in mice reveal that Axl signaling is required for wound repair but is dispensable for efferocytosis. By contrast, inhibition of another efferocytosis receptor, Timd4, in mouse wounds decreases efferocytosis and abrogates wound repair. These data highlight the distinct mechanisms by which apoptotic cell detection coordinates tissue repair and provides potential therapeutic targets for chronic wounds in diabetic patients.

3.
J Vis Exp ; (123)2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28570524

RESUMO

Electronic cigarettes (E-cigarettes) are being widely used, and growing in popularity. It is estimated that more than 9 million adults use them regularly. The potential adverse health effects of electronic cigarette vapor (E-vapor) exposure are poorly defined. While several animal models of E-vapor exposure have been developed, few models expose rodents to clinically relevant quantities of nicotine and make direct comparisons to cigarette smoke within the same exposure system. Here, we present a method for constructing and operating an E-vapor chamber and cigarette smoke chamber. The chambers are constructed by outfitting anesthesia chambers with a computer controlled pumping system that delivers consistent amounts of E-vapor or cigarette smoke to rodents. Nicotine exposure is measured indirectly by quantifying pre and post-exposure serum cotinine levels. This exposure system can be modified to accommodate various types of E-cigarettes and tobacco cigarettes, and can be used to compare the effects of E-vapor and cigarette smoke in vivo.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Adulto , Animais , Cotinina/sangue , Humanos , Ratos , Fumar , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA