Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Magn Reson ; 25(1): 73, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044439

RESUMO

BACKGROUND: Electrocardiographic imaging (ECGI) generates electrophysiological (EP) biomarkers while cardiovascular magnetic resonance (CMR) imaging provides data about myocardial structure, function and tissue substrate. Combining this information in one examination is desirable but requires an affordable, reusable, and high-throughput solution. We therefore developed the CMR-ECGI vest and carried out this technical development study to assess its feasibility and repeatability in vivo. METHODS: CMR was prospectively performed at 3T on participants after collecting surface potentials using the locally designed and fabricated 256-lead ECGI vest. Epicardial maps were reconstructed to generate local EP parameters such as activation time (AT), repolarization time (RT) and activation recovery intervals (ARI). 20 intra- and inter-observer and 8 scan re-scan repeatability tests. RESULTS: 77 participants were recruited: 27 young healthy volunteers (HV, 38.9 ± 8.5 years, 35% male) and 50 older persons (77.0 ± 0.1 years, 52% male). CMR-ECGI was achieved in all participants using the same reusable, washable vest without complications. Intra- and inter-observer variability was low (correlation coefficients [rs] across unipolar electrograms = 0.99 and 0.98 respectively) and scan re-scan repeatability was high (rs between 0.81 and 0.93). Compared to young HV, older persons had significantly longer RT (296.8 vs 289.3 ms, p = 0.002), ARI (249.8 vs 235.1 ms, p = 0.002) and local gradients of AT, RT and ARI (0.40 vs 0.34 ms/mm, p = 0,01; 0.92 vs 0.77 ms/mm, p = 0.03; and 1.12 vs 0.92 ms/mm, p = 0.01 respectively). CONCLUSION: Our high-throughput CMR-ECGI solution is feasible and shows good reproducibility in younger and older participants. This new technology is now scalable for high throughput research to provide novel insights into arrhythmogenesis and potentially pave the way for more personalised risk stratification. CLINICAL TRIAL REGISTRATION: Title: Multimorbidity Life-Course Approach to Myocardial Health-A Cardiac Sub-Study of the MRC National Survey of Health and Development (NSHD) (MyoFit46). National Clinical Trials (NCT) number: NCT05455125. URL: https://clinicaltrials.gov/ct2/show/NCT05455125?term=MyoFit&draw=2&rank=1.


Assuntos
Coração , Imageamento por Ressonância Magnética , Idoso , Feminino , Humanos , Masculino , Estudos de Viabilidade , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Adulto , Pessoa de Meia-Idade
2.
BMC Cardiovasc Disord ; 22(1): 140, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365075

RESUMO

BACKGROUND: The life course accumulation of overt and subclinical myocardial dysfunction contributes to older age mortality, frailty, disability and loss of independence. The Medical Research Council National Survey of Health and Development (NSHD) is the world's longest running continued surveillance birth cohort providing a unique opportunity to understand life course determinants of myocardial dysfunction as part of MyoFit46-the cardiac sub-study of the NSHD. METHODS: We aim to recruit 550 NSHD participants of approximately 75 years+ to undertake high-density surface electrocardiographic imaging (ECGI) and stress perfusion cardiovascular magnetic resonance (CMR). Through comprehensive myocardial tissue characterization and 4-dimensional flow we hope to better understand the burden of clinical and subclinical cardiovascular disease. Supercomputers will be used to combine the multi-scale ECGI and CMR datasets per participant. Rarely available, prospectively collected whole-of-life data on exposures, traditional risk factors and multimorbidity will be studied to identify risk trajectories, critical change periods, mediators and cumulative impacts on the myocardium. DISCUSSION: By combining well curated, prospectively acquired longitudinal data of the NSHD with novel CMR-ECGI data and sharing these results and associated pipelines with the CMR community, MyoFit46 seeks to transform our understanding of how early, mid and later-life risk factor trajectories interact to determine the state of cardiovascular health in older age. TRIAL REGISTRATION: Prospectively registered on ClinicalTrials.gov with trial ID: 19/LO/1774 Multimorbidity Life-Course Approach to Myocardial Health- A Cardiac Sub-Study of the MCRC National Survey of Health and Development (NSHD).


Assuntos
Doenças Cardiovasculares , Imageamento por Ressonância Magnética , Idoso , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/epidemiologia , Inquéritos Epidemiológicos , Coração , Humanos , Miocárdio
3.
Brain Topogr ; 31(1): 129-149, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29124547

RESUMO

Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.


Assuntos
Artefatos , Eletroencefalografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Ritmo alfa , Mapeamento Encefálico/métodos , Simulação por Computador , Eletroencefalografia/instrumentação , Potenciais Evocados Visuais/fisiologia , Humanos , Masculino , Sistemas On-Line , Razão Sinal-Ruído , Adulto Jovem
4.
J Neural Eng ; 14(2): 026003, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28155841

RESUMO

OBJECTIVE: Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. APPROACH: To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. MAIN RESULTS: The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. SIGNIFICANCE: In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved.


Assuntos
Algoritmos , Artefatos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
5.
IEEE Trans Biomed Eng ; 63(12): 2638-2646, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27576236

RESUMO

OBJECTIVE: Subtle motion of an epileptic patient examined with co-registered EEG and functional MRI (EEG-fMRI) may often lead to spurious fMRI activation patterns when true epileptic spikes are contaminated with motion artefacts. In recent years, methods relying on reference signals for correcting these subtle movements in the EEG have emerged. In this study, the performance of two reference-based devices are compared to the template-based method with regard to their ability to remove movement-related artifacts in EEG measured during scanning. METHODS: Measurements were performed with a novel double layer cap consisting of 29 EEG and 29 reference electrodes, and with a current loop cap consisting of 60 electrodes and three current loop wires attached to the cap. EEG was acquired inside the scanner during resting state, as well as when the subject was performing a cued movement task. For the double layer cap recordings, newly developed artifact removal algorithms are introduced and both reference signal-based methods are compared to a template-based correction method. RESULTS: The BCG artifacts occurring at resting state could be removed successfully by both the reference signal-based methods as well as by the template-based method. However, the reference signal-based methods were also capable of removing EEG artifacts induced by subtle movements, whereas the template-based method failed to remove these artifacts. CONCLUSION: Reference signal-based methods enable to correct for artifacts due to subtle movements, which are not removed by commonly used template-based removal algorithms. SIGNIFICANCE: Sensitivity of EEG-fMRI analysis in patients with focal epilepsy is improved by avoiding erroneous detections of subtle movements as epileptic spikes in the EEG.


Assuntos
Algoritmos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Artefatos , Humanos , Imageamento por Ressonância Magnética
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3803-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26737122

RESUMO

Although simultaneous measurement of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is one of the most valuable methods for studying human brain activity non-invasively, it remains challenging to measure high quality EEG inside the MRI scanner. Recently, a new approach for minimizing residual MRI scanner artifacts in the EEG was presented: reference layer artifact subtraction (RLAS). Here, reference electrodes capture only the artifacts, which are subsequently subtracted from the measurement electrodes. With the present work we demonstrate that replacing the subtraction by adaptive filtering statistically significantly outperforms RLAS. Reference layer adaptive filtering (RLAF) attenuates the average artifact root-mean-square (RMS) voltage of the passive MRI scanner to 0.7 µV (-14.4 dB). RLAS achieves 0.78 µV (-13.5 dB). The combination of average artifact subtraction (AAS) and RLAF reduces the residual average gradient artifact RMS voltage to 2.3 µV (-49.2 dB). AAS alone achieves 5.7 µV (-39.0 dB). All measurements were conducted with an MRI phantom, as the reference layer cap available to us was a prototype.


Assuntos
Artefatos , Encéfalo/fisiologia , Eletroencefalografia , Imageamento por Ressonância Magnética , Eletrodos , Eletroencefalografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
7.
Front Neurosci ; 6: 169, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23181009

RESUMO

Brain-computer interfaces (BCI) are communication systems that allow people to send messages or commands without movement. BCIs rely on different types of signals in the electroencephalogram (EEG), typically P300s, steady-state visually evoked potentials (SSVEP), or event-related desynchronization. Early BCI systems were often evaluated with a selected group of subjects. Also, many articles do not mention data from subjects who performed poorly. These and other factors have made it difficult to estimate how many people could use different BCIs. The present study explored how many subjects could use an SSVEP BCI. We recorded data from 53 subjects while they participated in 1-4 runs that were each 4 min long. During these runs, the subjects focused on one of four LEDs that each flickered at a different frequency. The eight channel EEG data were analyzed with a minimum energy parameter estimation algorithm and classified with linear discriminant analysis into one of the four classes. Online results showed that SSVEP BCIs could provide effective communication for all 53 subjects, resulting in a grand average accuracy of 95.5%. About 96.2% of the subjects reached an accuracy above 80%, and nobody was below 60%. This study showed that SSVEP based BCI systems can reach very high accuracies after only a very short training period. The SSVEP approach worked for all participating subjects, who attained accuracy well above chance level. This is important because it shows that SSVEP BCIs could provide communication for some users when other approaches might not work for them.

8.
Front Neurosci ; 6: 60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22586362

RESUMO

Most brain-computer interfaces (BCIs) rely on one of three types of signals in the electroencephalogram (EEG): P300s, steady-state visually evoked potentials, and event-related desynchronization. EEG is typically recorded non-invasively with electrodes mounted on the human scalp using conductive electrode gel for optimal impedance and data quality. The use of electrode gel entails serious problems that are especially pronounced in real-world settings when experts are not available. Some recent work has introduced dry electrode systems that do not require gel, but often introduce new problems such as comfort and signal quality. The principal goal of this study was to assess a new dry electrode BCI system in a very common task: spelling with a P300 BCI. A total of 23 subjects used a P300 BCI to spell the word "LUCAS" while receiving real-time, closed-loop feedback. The dry system yielded classification accuracies that were similar to those obtained with gel systems. All subjects completed a questionnaire after data recording, and all subjects stated that the dry system was not uncomfortable. This is the first field validation of a dry electrode P300 BCI system, and paves the way for new research and development with EEG recording systems that are much more practical and convenient in field settings than conventional systems.

9.
Stud Health Technol Inform ; 167: 182-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21685664

RESUMO

A Brain-Computer Interface (BCI) provides a completely new output pathway and so, an additional possible way a person can express himself if he/she suffers from disorders like amyotrophic lateral sclerosis (ALS), brainstem stroke, brain or spinal cord injury, or other diseases which impair the function of the common output pathways which are responsible for the control of muscles or impair the muscles. Although most BCIs are thought to help people with disabilities, they are mainly tested on healthy, young subjects who may achieve better results than people with impairments. In this study we compare measurements, performed on 10 physically disabled people, to the results of a previous study, taken using 100 healthy participants. We prove that, under certain constraints, most patients are able to control a P300-based spelling device with almost the same accuracy as the healthy ones. Tuning parameters are discussed, as well as criteria for people who are not able to use this device.


Assuntos
Encéfalo/fisiopatologia , Doenças do Sistema Nervoso Central/reabilitação , Simulação por Computador , Interface Usuário-Computador , Adulto , Doenças do Sistema Nervoso Central/fisiopatologia , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Neurosci Lett ; 462(1): 94-8, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19545601

RESUMO

An EEG-based brain-computer system can be used to control external devices such as computers, wheelchairs or Virtual Environments. One of the most important applications is a spelling device to aid severely disabled individuals with communication, for example people disabled by amyotrophic lateral sclerosis (ALS). P300-based BCI systems are optimal for spelling characters with high speed and accuracy, as compared to other BCI paradigms such as motor imagery. In this study, 100 subjects tested a P300-based BCI system to spell a 5-character word with only 5 min of training. EEG data were acquired while the subject looked at a 36-character matrix to spell the word WATER. Two different versions of the P300 speller were used: (i) the row/column speller (RC) that flashes an entire column or row of characters and (ii) a single character speller (SC) that flashes each character individually. The subjects were free to decide which version to test. Nineteen subjects opted to test both versions. The BCI system classifier was trained on the data collected for the word WATER. During the real-time phase of the experiment, the subject spelled the word LUCAS, and was provided with the classifier selection accuracy after each of the five letters. Additionally, subjects filled out a questionnaire about age, sex, education, sleep duration, working duration, cigarette consumption, coffee consumption, and level of disturbance that the flashing characters produced. 72.8% (N=81) of the subjects were able to spell with 100% accuracy in the RC paradigm and 55.3% (N=38) of the subjects spelled with 100% accuracy in the SC paradigm. Less than 3% of the subjects did not spell any character correctly. People who slept less than 8h performed significantly better than other subjects. Sex, education, working duration, and cigarette and coffee consumption were not statistically related to differences in accuracy. The disturbance of the flashing characters was rated with a median score of 1 on a scale from 1 to 5 (1, not disturbing; 5, highly disturbing). This study shows that high spelling accuracy can be achieved with the P300 BCI system using approximately 5 min of training data for a large number of non-disabled subjects, and that the RC paradigm is superior to the SC paradigm. 89% of the 81 RC subjects were able to spell with accuracy 80-100%. A similar study using a motor imagery BCI with 99 subjects showed that only 19% of the subjects were able to achieve accuracy of 80-100%. These large differences in accuracy suggest that with limited amounts of training data the P300-based BCI is superior to the motor imagery BCI. Overall, these results are very encouraging and a similar study should be conducted with subjects who have ALS to determine if their accuracy levels are similar.


Assuntos
Biorretroalimentação Psicológica , Encéfalo/fisiologia , Eletroencefalografia , Potenciais Evocados P300 , Interface Usuário-Computador , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Prática Psicológica , Processamento de Sinais Assistido por Computador , Inquéritos e Questionários , Redação
11.
Sleep ; 27(1): 147-50, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14998252

RESUMO

STUDY OBJECTIVES: Primary or idiopathic restless legs syndrome (RLS) is a sensorimotor disorder of unknown neurophysiologic origin. SETTING AND PATIENTS: Ten patients with RLS and 10 healthy control subjects were investigated. Postmovement beta oscillations (event-related synchronization, ERS) induced by movement of the right index finger were measured by electroencephalography and analyzed. RESULTS: We found differences between patients and controls for ERS values at electrode positions C3 and Cz. At C3, the lower beta band ERS (14-20 Hz) in the RLS group was 101.2% compared with 27.5% in the control group (P < .05); in the upper beta band, (20-32 Hz) the findings were 97.8% and 29.0%, respectively, for the RLS and control groups (P < .01). At electrode Cz, no significant difference could be found in the lower beta band, but, for the upper beta band, patients showed significantly higher values than did the healthy control subjects (68.5% vs 25.6%, P < .05). CONCLUSIONS: We interpret these findings as a higher need for motor-cortical inhibition in RLS patients due to an increased level of excitation by motor-cortex activation and input from neighboring functionally interrelated cortical areas (hand and foot region). These results reveal new potentially important findings of the neurophysiologic and pathophysiologic origin of primary RLS.


Assuntos
Sincronização Cortical , Eletroencefalografia , Potenciais Evocados/fisiologia , Síndrome das Pernas Inquietas/diagnóstico , Adulto , Idoso , Feminino , Dedos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA