Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612892

RESUMO

Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is the central molecular biomarker linked to both the response to temozolomide, the standard chemotherapy drug employed for GBM, and to patient survival. However, MGMT status is captured on tumor tissue which, given the difficulty in acquisition, limits the use of this molecular feature for treatment monitoring. MGMT protein expression levels may offer additional insights into the mechanistic understanding of MGMT but, currently, they correlate poorly to promoter methylation. The difficulty of acquiring tumor tissue for MGMT testing drives the need for non-invasive methods to predict MGMT status. Feature selection aims to identify the most informative features to build accurate and interpretable prediction models. This study explores the new application of a combined feature selection (i.e., LASSO and mRMR) and the rank-based weighting method (i.e., MGMT ProFWise) to non-invasively link MGMT promoter methylation status and serum protein expression in patients with GBM. Our method provides promising results, reducing dimensionality (by more than 95%) when employed on two large-scale proteomic datasets (7k SomaScan® panel and CPTAC) for all our analyses. The computational results indicate that the proposed approach provides 14 shared serum biomarkers that may be helpful for diagnostic, prognostic, and/or predictive operations for GBM-related processes, given further validation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Proteômica , Temozolomida/uso terapêutico , Proteínas Sanguíneas , Neoplasias Encefálicas/genética , O(6)-Metilguanina-DNA Metiltransferase , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38550554

RESUMO

Introduction: Patient selection remains challenging as the clinical use of re-irradiation (re-RT) increases. Re-RT data is limited to retrospective studies and small prospective single-institution reports, resulting in small, heterogenous data sets. Validated prognostic and predictive biomarkers are derived from large-volume studies with long-term follow-up. This review aims to examine existing re-RT publications and available data sets and discuss strategies using artificial intelligence (AI) to approach small data sets to optimize the use of re-RT data. Methods: Re-RT publications were identified where associated public data was present. The existing literature on small data sets to identify biomarkers was also explored. Results: Publications with associated public data were identified, with glioma and nasopharyngeal cancers emerging as the most common tumor sites where the use of re-RT was the primary management approach. Existing and emerging AI strategies have been used to approach small data sets including data generation, augmentation, discovery, and transfer learning. Conclusions: Further data is needed to generate adaptive frameworks, improve the collection of specimens for molecular analysis, and improve the interpretability of results in re-RT data.

4.
Biomolecules ; 13(10)2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37892181

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). PURPOSE: The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. MATERIALS AND METHODS: Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. RESULTS: A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial-mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. CONCLUSIONS: Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials.


Assuntos
Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Estudos Retrospectivos , Proteoma , Proteômica , Antineoplásicos Alquilantes , Proteínas Hedgehog
6.
Cancers (Basel) ; 15(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760597

RESUMO

Glioma grading plays a pivotal role in guiding treatment decisions, predicting patient outcomes, facilitating clinical trial participation and research, and tailoring treatment strategies. Current glioma grading in the clinic is based on tissue acquired at the time of resection, with tumor aggressiveness assessed from tumor morphology and molecular features. The increased emphasis on molecular characteristics as a guide for management and prognosis estimation underscores is driven by the need for accurate and standardized grading systems that integrate molecular and clinical information in the grading process and carry the expectation of the exposure of molecular markers that go beyond prognosis to increase understanding of tumor biology as a means of identifying druggable targets. In this study, we introduce a novel application (GradWise) that combines rank-based weighted hybrid filter (i.e., mRMR) and embedded (i.e., LASSO) feature selection methods to enhance the performance of feature selection and machine learning models for glioma grading using both clinical and molecular predictors. We utilized publicly available TCGA from the UCI ML Repository and CGGA datasets to identify the most effective scheme that allows for the selection of the minimum number of features with their names. Two popular feature selection methods with a rank-based weighting procedure were employed to conduct comprehensive experiments with the five supervised models. The computational results demonstrate that our proposed method achieves an accuracy rate of 87.007% with 13 features and an accuracy rate of 80.412% with five features on the TCGA and CGGA datasets, respectively. We also obtained four shared biomarkers for the glioma grading that emerged in both datasets and can be employed with transferable value to other datasets and data-based outcome analyses. These findings are a significant step toward highlighting the effectiveness of our approach by offering pioneering results with novel markers with prospects for understanding and targeting the biologic mechanisms of glioma progression to improve patient outcomes.

7.
Curr Oncol ; 30(9): 8278-8293, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37754516

RESUMO

Biomarkers for resistance in Glioblastoma multiforme (GBM) are lacking, and progress in the clinic has been slow to arrive. CD133 (prominin-1) is a membrane-bound glycoprotein on the surface of cancer stem cells (CSCs) that has been associated with poor prognosis, therapy resistance, and tumor recurrence in GBM. Due to its connection to CSCs, to which tumor resistance and recurrence have been partially attributed in GBM, there is a growing field of research revolving around the potential role of CD133 in each of these processes. However, despite encouraging results in vitro and in vivo, the biological interplay of CD133 with these components is still unclear, causing a lack of clinical application. In parallel, omic data from biospecimens that include CD133 are beginning to emerge, increasing the importance of understanding CD133 for the effective use of these highly dimensional data sets. Given the significant mechanistic overlap, prioritization of the most robust findings is necessary to optimize the transition of CD133 to clinical applications using patient-derived biospecimens. As a result, this review aims to compile and analyze the current research regarding CD133 as a functional unit in GBM, exploring its connections to prognosis, the tumor microenvironment, tumor resistance, and tumor recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Recidiva Local de Neoplasia , Neoplasias Encefálicas/tratamento farmacológico , Prognóstico , Microambiente Tumoral
8.
Front Oncol ; 13: 1127645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637066

RESUMO

Background: Glioblastomas (GBM) are rapidly progressive, nearly uniformly fatal brain tumors. Proteomic analysis represents an opportunity for noninvasive GBM classification and biological understanding of treatment response. Purpose: We analyzed differential proteomic expression pre vs. post completion of concurrent chemoirradiation (CRT) in patient serum samples to explore proteomic alterations and classify GBM by integrating clinical and proteomic parameters. Materials and methods: 82 patients with GBM were clinically annotated and serum samples obtained pre- and post-CRT. Serum samples were then screened using the aptamer-based SOMAScan® proteomic assay. Significant traits from uni- and multivariate Cox models for overall survival (OS) were designated independent prognostic factors and principal component analysis (PCA) was carried out. Differential expression of protein signals was calculated using paired t-tests, with KOBAS used to identify associated KEGG pathways. GSEA pre-ranked analysis was employed on the overall list of differentially expressed proteins (DEPs) against the MSigDB Hallmark, GO Biological Process, and Reactome databases with weighted gene correlation network analysis (WGCNA) and Enrichr used to validate pathway hits internally. Results: 3 clinical clusters of patients with differential survival were identified. 389 significantly DEPs pre vs. post-treatment were identified, including 284 upregulated and 105 downregulated, representing several pathways relevant to cancer metabolism and progression. The lowest survival group (median OS 13.2 months) was associated with DEPs affiliated with proliferative pathways and exhibiting distinct oppositional response including with respect to radiation therapy related pathways, as compared to better-performing groups (intermediate, median OS 22.4 months; highest, median OS 28.7 months). Opposite signaling patterns across multiple analyses in several pathways (notably fatty acid metabolism, NOTCH, TNFα via NF-κB, Myc target V1 signaling, UV response, unfolded protein response, peroxisome, and interferon response) were distinct between clinical survival groups and supported by WGCNA. 23 proteins were statistically signficant for OS with 5 (NETO2, CST7, SEMA6D, CBLN4, NPS) supported by KM. Conclusion: Distinct proteomic alterations with hallmarks of cancer, including progression, resistance, stemness, and invasion, were identified in serum samples obtained from GBM patients pre vs. post CRT and corresponded with clinical survival. The proteome can potentially be employed for glioma classification and biological interrogation of cancer pathways.

9.
Cancers (Basel) ; 15(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345009

RESUMO

Glioblastomas (GBM) are rapidly growing, aggressive, nearly uniformly fatal, and the most common primary type of brain cancer. They exhibit significant heterogeneity and resistance to treatment, limiting the ability to analyze dynamic biological behavior that drives response and resistance, which are central to advancing outcomes in glioblastoma. Analysis of the proteome aimed at signal change over time provides a potential opportunity for non-invasive classification and examination of the response to treatment by identifying protein biomarkers associated with interventions. However, data acquired using large proteomic panels must be more intuitively interpretable, requiring computational analysis to identify trends. Machine learning is increasingly employed, however, it requires feature selection which has a critical and considerable effect on machine learning problems when applied to large-scale data to reduce the number of parameters, improve generalization, and find essential predictors. In this study, using 7k proteomic data generated from the analysis of serum obtained from 82 patients with GBM pre- and post-completion of concurrent chemoirradiation (CRT), we aimed to select the most discriminative proteomic features that define proteomic alteration that is the result of administering CRT. Thus, we present a novel rank-based feature weighting method (RadWise) to identify relevant proteomic parameters using two popular feature selection methods, least absolute shrinkage and selection operator (LASSO) and the minimum redundancy maximum relevance (mRMR). The computational results show that the proposed method yields outstanding results with very few selected proteomic features, with higher accuracy rate performance than methods that do not employ a feature selection process. While the computational method identified several proteomic signals identical to the clinical intuitive (heuristic approach), several heuristically identified proteomic signals were not selected while other novel proteomic biomarkers not selected with the heuristic approach that carry biological prognostic relevance in GBM only emerged with the novel method. The computational results show that the proposed method yields promising results, reducing 7k proteomic data to 7 selected proteomic features with a performance value of 93.921%, comparing favorably with techniques that do not employ feature selection.

10.
Int J Radiat Oncol Biol Phys ; 117(3): 533-550, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244628

RESUMO

PURPOSE: The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships. METHODS AND MATERIALS: The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs. The Big Data Science Committee adopted an iterative, cyclical approach to engaging stakeholders beyond its membership to optimize the integration of diverse perspectives from the community. RESULTS: We developed the Operational Ontology for Oncology (O3), which identified 42 key elements, 359 attributes, 144 value sets, and 155 relationships ranked in relative importance of clinical significance, likelihood of availability in EHRs, and the ability to modify routine clinical processes to permit aggregation. Recommendations are provided for best use and development of the O3 to 4 constituencies: device manufacturers, centers of clinical care, researchers, and professional societies. CONCLUSIONS: O3 is designed to extend and interoperate with existing global infrastructure and data science standards. The implementation of these recommendations will lower the barriers for aggregation of information that could be used to create large, representative, findable, accessible, interoperable, and reusable data sets to support the scientific objectives of grant programs. The construction of comprehensive "real-world" data sets and application of advanced analytical techniques, including artificial intelligence, holds the potential to revolutionize patient management and improve outcomes by leveraging increased access to information derived from larger, more representative data sets.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Humanos , Inteligência Artificial , Consenso , Neoplasias/radioterapia , Informática
11.
Biomedicines ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551786

RESUMO

Gliomas are the most common and aggressive primary brain tumors. Gliomas carry a poor prognosis because of the tumor's resistance to radiation and chemotherapy leading to nearly universal recurrence. Recent advances in large-scale genomic research have allowed for the development of more targeted therapies to treat glioma. While precision medicine can target specific molecular features in glioma, targeted therapies are often not feasible due to the lack of actionable markers and the high cost of molecular testing. This review summarizes the clinically relevant molecular features in glioma and the current cost of care for glioma patients, focusing on the molecular markers and meaningful clinical features that are linked to clinical outcomes and have a realistic possibility of being measured, which is a promising direction for precision medicine using artificial intelligence approaches.

12.
Lancet Oncol ; 23(12): 1499-1507, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343655

RESUMO

BACKGROUND: Detection of skeletal metastases in patients with prostate cancer or breast cancer remains a major clinical challenge. We aimed to compare the diagnostic performance of 99mTc-methylene diphosphonate (99mTc-MDP) single-photon emission CT (SPECT) and 18F-sodium fluoride (18F-NaF) PET-CT for the detection of osseous metastases in patients with high-risk prostate or breast cancer. METHODS: MITNEC-A1 was a prospective, multicentre, single-cohort, phase 3 trial conducted in ten hospitals across Canada. Patients aged 18 years or older with breast or prostate cancer with a WHO performance status of 0-2 and with high risk or clinical suspicion for bone metastasis, but without previously documented bone involvement, were eligible. 18F-NaF PET-CT and 99mTc-MDP SPECT were done within 14 days of each other for each participant. Two independent reviewers interpreted each modality without knowledge of other imaging findings. The primary endpoint was the overall accuracy of 99mTc-MDP SPECT and 18F-NaF PET-CT scans for the detection of bone metastases in the per-protocol population. A combination of histopathological, clinical, and imaging follow-up for up to 24 months was used as the reference standard to assess the imaging results. Safety was assessed in all enrolled participants. This study is registered with ClinicalTrials.gov, NCT01930812, and is complete. FINDINGS: Between July 11, 2014, and March 3, 2017, 290 patients were screened, 288 of whom were enrolled (64 participants with breast cancer and 224 with prostate cancer). 261 participants underwent both 18F-NaF PET-CT and 99mTc-MDP SPECT and completed the required follow-up for statistical analysis. Median follow-up was 735 days (IQR 727-750). Based on the reference methods used, 109 (42%) of 261 patients had bone metastases. In the patient-based analysis, 18F-NaF PET-CT was more accurate than 99mTc-MDP SPECT (84·3% [95% CI 79·9-88·7] vs 77·4% [72·3-82·5], difference 6·9% [95% CI 1·3-12·5]; p=0·016). No adverse events were reported for the 288 patients recruited. INTERPRETATION: 18F-NaF has the potential to displace 99mTc-MDP as the bone imaging radiopharmaceutical of choice in patients with high-risk prostate or breast cancer. FUNDING: Canadian Institutes of Health Research.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluoreto de Sódio , Fluordesoxiglucose F18 , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Estudos Prospectivos , Canadá , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias Ósseas/secundário , Cintilografia , Tomografia Computadorizada de Emissão de Fóton Único
13.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430631

RESUMO

Determining the aggressiveness of gliomas, termed grading, is a critical step toward treatment optimization to increase the survival rate and decrease treatment toxicity for patients. Streamlined grading using molecular information has the potential to facilitate decision making in the clinic and aid in treatment planning. In recent years, molecular markers have increasingly gained importance in the classification of tumors. In this study, we propose a novel hierarchical voting-based methodology for improving the performance results of the feature selection stage and machine learning models for glioma grading with clinical and molecular predictors. To identify the best scheme for the given soft-voting-based ensemble learning model selections, we utilized publicly available TCGA and CGGA datasets and employed four dimensionality reduction methods to carry out a voting-based ensemble feature selection and five supervised models, with a total of sixteen combination sets. We also compared our proposed feature selection method with the LASSO feature selection method in isolation. The computational results indicate that the proposed method achieves 87.606% and 79.668% accuracy rates on TCGA and CGGA datasets, respectively, outperforming the LASSO feature selection method.


Assuntos
Algoritmos , Glioma , Humanos , Glioma/genética , Aprendizado de Máquina
14.
Health Informatics J ; 28(4): 14604582221135427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264067

RESUMO

Gliomas are the most common central nervous system tumors exhibiting poor clinical outcomes. The ability to estimate prognosis is crucial for both patients and providers in order to select the most appropriate treatment. Machine learning (ML) allows for sophisticated approaches to survival prediction using real world clinical parameters needed to achieve superior predictive accuracy. We employed Cox Proportional hazards (CPH) model, Support Vector Machine (SVM) model, Random Forest (RF) model in a large glioma dataset (3462 patients, diagnosed 2000-2018) to explore the most optimal approach to survival prediction. Features employed were age, sex, surgical resection status, tumor histology and tumor site, administration of radiation therapy (RT) and chemotherapy status. Concordance index (c-index) was employed to assess the accuracy of survival time prediction. All three models performed well with prediction accuracy (CI 0.767, 0.771, 0.57 for CPH, SVM, RF models respectively) with the best performance achieved when incorporating RT and chemotherapy administration status which emerged as key predictive features. Within the subset of glioblastoma patients, similar prediction accuracy was achieved. These findings should prompt stricter clinician oversight over registry data accuracy through quality assurance as we move towards meaningful predictive ability using ML approaches in glioma.


Assuntos
Glioma , Humanos , Glioma/diagnóstico , Glioma/terapia , Aprendizado de Máquina , Máquina de Vetores de Suporte , Prognóstico , Sistema de Registros
15.
Biomolecules ; 12(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139042

RESUMO

Sex differences are increasingly being explored and reported in oncology, and glioma is no exception. As potentially meaningful sex differences are uncovered, existing gender-derived disparities mirror data generated in retrospective and prospective trials, real-world large-scale data sets, and bench work involving animals and cell lines. The resulting disparities at the data level are wide-ranging, potentially resulting in both adverse outcomes and failure to identify and exploit therapeutic benefits. We set out to analyze the literature on women's data disparities in glioma by exploring the origins of data in this area to understand the representation of women in study samples and omics analyses. Given the current emphasis on inclusive study design and research, we wanted to explore if sex bias continues to exist in present-day data sets and how sex differences in data may impact conclusions derived from large-scale data sets, omics, biospecimen analysis, novel interventions, and standard of care management.


Assuntos
Glioma , Caracteres Sexuais , Animais , Feminino , Glioma/genética , Glioma/terapia , Humanos , Masculino , Estudos Prospectivos , Publicações , Estudos Retrospectivos
16.
Neurooncol Adv ; 4(1): vdac052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733517

RESUMO

Background: Glioblastoma (GBM) is associated with fatal outcomes and devastating neurological presentations especially impacting the elderly. Management remains controversial and representation in clinical trials poor. We generated 2 nomograms and a clinical decision making web tool using real-world data. Methods: Patients ≥60 years of age with histologically confirmed GBM (ICD-O-3 histology codes 9440/3, 9441/3, and 9442/3) diagnosed 2005-2015 were identified from the BC Cancer Registry (n = 822). Seven hundred and twenty-nine patients for which performance status was captured were included in the analysis. Age, performance and resection status, administration of radiation therapy (RT), and chemotherapy were reviewed. Nomograms predicting 6- and 12-month overall survival (OS) probability were developed using Cox proportional hazards regression internally validated by c-index. A web tool powered by JavaScript was developed to calculate the survival probability. Results: Median OS was 6.6 months (95% confidence interval [CI] 6-7.2 months). Management involved concurrent chemoradiation (34%), RT alone (42%), and chemo alone (2.3%). Twenty-one percent of patients did not receive treatment beyond surgical intervention. Age, performance status, extent of resection, chemotherapy, and RT administration were all significant independent predictors of OS. Patients <80 years old who received RT had a significant survival advantage, regardless of extent of resection (hazard ratio range from 0.22 to 0.60, CI 0.15-0.95). A nomogram was constructed from all 729 patients (Harrell's Concordance Index = 0.78 [CI 0.71-0.84]) with a second nomogram based on subgroup analysis of the 452 patients who underwent RT (Harrell's Concordance Index = 0.81 [CI 0.70-0.90]). An online calculator based on both nomograms was generated for clinical use. Conclusions: Two nomograms and accompanying web tool incorporating commonly captured clinical features were generated based on real-world data to optimize decision making in the clinic.

17.
Cancers (Basel) ; 14(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35740563

RESUMO

Recent technological developments have led to an increase in the size and types of data in the medical field derived from multiple platforms such as proteomic, genomic, imaging, and clinical data. Many machine learning models have been developed to support precision/personalized medicine initiatives such as computer-aided detection, diagnosis, prognosis, and treatment planning by using large-scale medical data. Bias and class imbalance represent two of the most pressing challenges for machine learning-based problems, particularly in medical (e.g., oncologic) data sets, due to the limitations in patient numbers, cost, privacy, and security of data sharing, and the complexity of generated data. Depending on the data set and the research question, the methods applied to address class imbalance problems can provide more effective, successful, and meaningful results. This review discusses the essential strategies for addressing and mitigating the class imbalance problems for different medical data types in the oncologic domain.

18.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565358

RESUMO

The development and advancement of aptamer technology has opened a new realm of possibilities for unlocking the biocomplexity available within proteomics. With ultra-high-throughput and multiplexing, alongside remarkable specificity and sensitivity, aptamers could represent a powerful tool in disease-specific research, such as supporting the discovery and validation of clinically relevant biomarkers. One of the fundamental challenges underlying past and current proteomic technology has been the difficulty of translating proteomic datasets into standards of practice. Aptamers provide the capacity to generate single panels that span over 7000 different proteins from a singular sample. However, as a recent technology, they also present unique challenges, as the field of translational aptamer-based proteomics still lacks a standardizing methodology for analyzing these large datasets and the novel considerations that must be made in response to the differentiation amongst current proteomic platforms and aptamers. We address these analytical considerations with respect to surveying initial data, deploying proper statistical methodologies to identify differential protein expressions, and applying datasets to discover multimarker and pathway-level findings. Additionally, we present aptamer datasets within the multi-omics landscape by exploring the intersectionality of aptamer-based proteomics amongst genomics, transcriptomics, and metabolomics, alongside pre-existing proteomic platforms. Understanding the broader applications of aptamer datasets will substantially enhance current efforts to generate translatable findings for the clinic.

19.
Int J Radiat Oncol Biol Phys ; 112(5): 1126-1134, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986383

RESUMO

PURPOSE: The aim of this study was to characterize the patterns of prostate cancer recurrence after brachytherapy (BT) using 2-(3-[1-carboxy-5-([6-18F-fluoropyridine-3-carbonyl]-amino)-pentyl]-ureido)-pentanedioic acid ([18F]DCFPyL) prostate-specific membrane antigen (PSMA) positron emission tomography (PET) and computed tomography (CT) imaging. METHODS AND MATERIALS: Patients were selected from an ongoing prospective institutional trial investigating the use of [18F]DCFPyL PSMA PET and CT in recurrent prostate cancer (NCT02899312). This report included patients who underwent BT (either monotherapy or boost) and experienced a biochemical failure (BF) defined by the Phoenix definition (prostate-specific antigen [PSA] > 2 ng/mL above nadir). RESULTS: Between March 2017 and April 2020, 670 patients underwent [18F]DCFPyL PSMA PET and CT imaging. Of these 670 patients, 93 were treated with BT; 73 underwent monotherapy, and 20 underwent BT boost (19 low-dose rate and 1 high-dose rate). To report on patterns of recurrence outcomes, 86 patients (median prescan PSA 6.0) with a positive [18F]DCFPyL PSMA PET and CT scan and true BF were included. The most common location of relapse was local; 62.8% had a component of local failure (defined as prostate and/or seminal vesicles), and 46.5% had isolated local failure only, with no other sites of involvement. Regional failure occurred in 40.7% of patients, and 36.0% had metastatic failure. Isolated local recurrence was seen in 54.3% of monotherapy patients versus only in 12.5% of boost patients. Metastatic failure was seen in 28.6% of monotherapy patients versus 68.8% of the boost patients. Local recurrences (69.0%) were found within the same prostate biopsy sextant involved with the tumor at diagnosis, and 76.0% of patients with seminal vesicle recurrences had prostate-base involvement at diagnosis. CONCLUSIONS: Contrary to previous evidence, our study suggests that in prostate BT patients with biochemical recurrence, the most common site of failure is local for the patients treated with monotherapy and metastatic for patients treated with a combination of external beam radiation and BT boost.


Assuntos
Braquiterapia , Neoplasias da Próstata , Humanos , Lisina , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Próstata/diagnóstico por imagem , Próstata/patologia , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Tomografia Computadorizada por Raios X , Ureia
20.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948075

RESUMO

Computational approaches including machine learning, deep learning, and artificial intelligence are growing in importance in all medical specialties as large data repositories are increasingly being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition and well positioned towards both the production and analysis of large-scale oncologic data with the potential for clinically driven endpoints and advancement of patient outcomes. Neuro-oncology is comprised of malignancies that often carry poor prognosis and significant neurological sequelae. The analysis of radiation therapy mediated treatment and the potential for computationally mediated analyses may lead to more precise therapy by employing large scale data. We analysed the state of the literature pertaining to large scale data, computational analysis, and the advancement of molecular biomarkers in neuro-oncology with emphasis on radiation oncology. We aimed to connect existing and evolving approaches to realistic avenues for clinical implementation focusing on low grade gliomas (LGG), high grade gliomas (HGG), management of the elderly patient with HGG, rare central nervous system tumors, craniospinal irradiation, and re-irradiation to examine how computational analysis and molecular science may synergistically drive advances in personalised radiation therapy (RT) and optimise patient outcomes.


Assuntos
Neoplasias do Sistema Nervoso Central/radioterapia , Aprendizado de Máquina , Radioterapia (Especialidade)/métodos , Biomarcadores Tumorais , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Biologia Computacional , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Glioma/radioterapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA