Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(3): e12420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490958

RESUMO

High-grade serous carcinoma of the ovary, fallopian tube and peritoneum (HGSC), the most common type of ovarian cancer, ranks among the deadliest malignancies. Many HGSC patients have excess fluid in the peritoneum called ascites. Ascites is a tumour microenvironment (TME) containing various cells, proteins and extracellular vesicles (EVs). We isolated EVs from patients' ascites by orthogonal methods and analyzed them by mass spectrometry. We identified not only a set of 'core ascitic EV-associated proteins' but also defined their subset unique to HGSC ascites. Using single-cell RNA sequencing data, we mapped the origin of HGSC-specific EVs to different types of cells present in ascites. Surprisingly, EVs did not come predominantly from tumour cells but from non-malignant cell types such as macrophages and fibroblasts. Flow cytometry of ascitic cells in combination with analysis of EV protein composition in matched samples showed that analysis of cell type-specific EV markers in HGSC has more substantial prognostic potential than analysis of ascitic cells. To conclude, we provide evidence that proteomic analysis of EVs can define the cellular composition of HGSC TME. This finding opens numerous avenues both for a better understanding of EV's role in tumour promotion/prevention and for improved HGSC diagnostics.


Assuntos
Cistadenocarcinoma Seroso , Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Ascite/metabolismo , Ascite/patologia , Microambiente Tumoral , Proteômica , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ovarianas/diagnóstico
2.
Biochim Biophys Acta Biomembr ; 1864(10): 183983, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750206

RESUMO

Over the past decades an extensive effort has been made to provide a more comprehensive understanding of Wnt signaling, yet many regulatory and structural aspects remain elusive. Among these, the ability of Dishevelled (DVL) protein to relocalize at the plasma membrane is a crucial step in the activation of all Wnt pathways. The membrane binding of DVL was suggested to be mediated by the preferential interaction of its C-terminal DEP domain with phosphatidic acid (PA). However, due to the scarcity and fast turnover of PA, we investigated the role on the membrane association of other more abundant phospholipids. The combined results from computational simulations and experimental measurements with various model phospholipid membranes, demonstrate that the membrane binding of DEP/DVL constructs is governed by the concerted action of generic electrostatics and finely-tuned intermolecular interactions with individual lipid species. In particular, while we confirmed the strong preference for PA lipid, we also observed a weak but non-negligible affinity for phosphatidylserine, the most abundant anionic phospholipid in the plasma membrane, and phosphatidylinositol 4,5-bisphosphate. The obtained molecular insight into DEP-membrane interaction helps to elucidate the relation between changes in the local membrane composition and the spatiotemporal localization of DVL and, possibly, other DEP-containing proteins.


Assuntos
Ácidos Fosfatídicos , Proteínas , Membrana Celular/metabolismo , Proteínas Desgrenhadas/metabolismo , Proteínas/metabolismo , Eletricidade Estática
3.
Cell Commun Signal ; 17(1): 170, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870452

RESUMO

BACKGROUND: Dishevelled (DVL) is an essential component of the Wnt signaling cascades. Function of DVL is controlled by phosphorylation but the molecular details are missing. DVL3 contains 131 serines and threonines whose phosphorylation generates complex barcodes underlying diverse DVL3 functions. In order to dissect the role of DVL phosphorylation we analyzed the phosphorylation of human DVL3 induced by previously reported (CK1ε, NEK2, PLK1, CK2α, RIPK4, PKCδ) and newly identified (TTBK2, Aurora A) DVL kinases. METHODS: Shotgun proteomics including TiO2 enrichment of phosphorylated peptides followed by liquid chromatography tandem mass spectrometry on immunoprecipitates from HEK293T cells was used to identify and quantify phosphorylation of DVL3 protein induced by 8 kinases. Functional characterization was performed by in-cell analysis of phospho-mimicking/non-phosphorylatable DVL3 mutants and supported by FRET assays and NMR spectroscopy. RESULTS: We used quantitative mass spectrometry and calculated site occupancies and quantified phosphorylation of > 80 residues. Functional validation demonstrated the importance of CK1ε-induced phosphorylation of S268 and S311 for Wnt-3a-induced ß-catenin activation. S630-643 cluster phosphorylation by CK1, NEK2 or TTBK2 is essential for even subcellular distribution of DVL3 when induced by CK1 and TTBK2 but not by NEK2. Further investigation showed that NEK2 utilizes a different mechanism to promote even localization of DVL3. NEK2 triggered phosphorylation of PDZ domain at S263 and S280 prevents binding of DVL C-terminus to PDZ and promotes an open conformation of DVL3 that is more prone to even subcellular localization. CONCLUSIONS: We identify unique phosphorylation barcodes associated with DVL function. Our data provide an example of functional synergy between phosphorylation in structured domains and unstructured IDRs that together dictate the biological outcome. Video Abtract.


Assuntos
Proteínas Desgrenhadas/metabolismo , Células Cultivadas , Proteínas Desgrenhadas/química , Células HEK293 , Humanos , Espectrometria de Massas , Quinases Relacionadas a NIMA/metabolismo , Fosforilação , Conformação Proteica , Transdução de Sinais
4.
Nat Commun ; 10(1): 1804, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000703

RESUMO

Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Proteínas Desgrenhadas/metabolismo , Domínios PDZ/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Técnicas Biossensoriais , Caseína Quinase 1 épsilon/genética , Proteínas Desgrenhadas/genética , Ensaios Enzimáticos/métodos , Transferência Ressonante de Energia de Fluorescência , Receptores Frizzled/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Microscopia de Fluorescência/métodos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oócitos , Fosforilação/fisiologia , Análise de Célula Única/métodos , Xenopus laevis
5.
J Extracell Vesicles ; 8(1): 1560808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719239

RESUMO

Extracellular vesicles (EVs) function as important conveyers of information between cells and thus can be exploited as drug delivery systems or disease biomarkers. Transmission electron microscopy (TEM) remains the gold standard method for visualisation of EVs, however the analysis of individual EVs in TEM images is time-consuming if performed manually. Therefore, we present here a software tool for computer-assisted evaluation of EVs in TEM images. TEM ExosomeAnalyzer detects EVs based on their shape and edge contrast criteria and subsequently analyses their size and roundness. The software tool is compatible with common negative staining protocols and isolation methods used in the field of EV research; even with challenging TEM images (EVs both lighter and darker than the background, images containing artefacts or precipitated stain, etc.). If the fully-automatic analysis fails to produce correct results, users can promptly adjust the detected seeds of EVs as well as their boundaries manually. The performance of our tool was evaluated for three different modes with variable levels of human interaction, using two datasets with various heterogeneity. The semi-automatic mode analyses EVs with high success rate in the homogenous dataset (F1 score 0.9094, Jaccard coefficient 0.8218) as well as in the highly heterogeneous dataset containing EVs isolated from cell culture medium and patient samples (F1 score 0.7619, Jaccard coefficient 0.7553). Moreover, the extracted size distribution profiles of EVs isolated from malignant ascites of ovarian cancer patients overlap with those derived by cryo-EM and are comparable to NTA- and TRPS-derived data. In summary, TEM ExosomeAnalyzer is an easy-to-use software tool for evaluation of many types of vesicular microparticles and is available at http://cbia.fi.muni.cz/exosome-analyzer free of charge for non-commercial and research purposes. The web page contains also detailed description how to use the software tool including a video tutorial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA